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ABSTRACT

A RAY-BASED INVESTIGATION OF THE STATISTICAL CHARACTERISTICS

AND EFFICIENT REPRESENTATION OF MULTI-ANTENNA

COMMUNICATION CHANNELS

Gus R. German

Department of Electrical and Computer Engineering

Master of Science

Multi-antenna communication systems are attracting research interest as a

means to increase the information capacity, reliability, and spectral efficiency of wire-

less information transfer. Ray-tracing methods predict the behavior of wireless chan-

nels using a model of the propagation environment and are a low-cost alternative

to direct measurements. We use ray tracing simulations to validate the statistical

time and angle of arrival characteristics of an indoor multipath channel and compare

model parameter estimates with estimates derived from channel sounding measure-

ments. Ray tracing predicts the time and angle clustering of multipaths observed in

the measurements and provides model parameter estimates which are closely corre-

lated with measured estimates. The ray tracing parameters relating to power char-

acteristics show more deviation from measurements than the time and angle related

parameters. Our results also indicate that the description of reflective scatterers in
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the propagation environment is more important to the quality of the predicted statis-

tical behavior than the description of bulk materials. We use a ray synthesis model

to investigate means of efficiently representing the channel for feedback information

to the transmitter as a means to increase the information capacity. Several meth-

ods of selecting the ray-model feedback information are demonstrated with results

from simulated and measured channels. These results indicate that an ESPRIT al-

gorithm coupled with ad hoc transmit/receive pairing can yield better than 90% of

the ideal waterfilling capacity when adequate training-based channel estimates are

available. Additionally, we investigate a covariance feedback method for providing

channel feedback for increased capacity. Both the ray-based and covariance-based

feedback methods yield their highest capacity improvements when the signal to noise

ratio is low. This results because of the larger benefit of focusing transmit power into

the most advantageous eigenmodes of the channel when fewer eigenmodes have power

allocated to them by the waterfilling capacity solution. In higher signal to noise ratio

cases, more eigenmodes of the channel receive power when waterfilling, and the ca-

pacity improvement from feedback information decreases relative to a uniform power

allocation. In general, ray model feedback methods are preferable because the covari-

ance feedback quickly requires higher computational effort as the array sizes increase

and typically results in lower capacity for a given amount of feedback information.

Index terms: multiple-input multiple-output (MIMO) channels, indoor multipath

channels, ray tracing, channel state information feedback, information capacity

v
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Chapter 1

Introduction

Indoor wireless technologies are attracting increasing research and develop-

ment efforts as the market demands data transmission applications which are ex-

tremely reliable, widely available, and operate at high data rates. Multiple Input,

Multiple Output (MIMO) systems employ several antennas at both ends of a wire-

less transmission and have attracted significant attention because of the theoretical

capacity gains which are predicted to grow linearly with the number of antenna el-

ements - much faster than the gains from simply increasing the signal-to-noise ratio

(SNR) in the system [3], [4]. The design of MIMO wireless communications networks

to meet ever increasing performance demands requires deeper and more thorough

understanding of the RF propagation environment and design tools that increasingly

exploit the underlying structure of this environment. A variety of propagation mod-

els for MIMO channels have been proposed using both statistical and deterministic

methodologies and are reviewed in [5]. This thesis contributes to this effort by vali-

dating some aspects of a proposed propagation model for indoor MIMO channels. In

addition, we investigate a method for feedback of channel state information (CSI) to

the transmitter for improving the channel information capacity.

The purpose of channel modeling is to describe the dominant features of ob-

servations with a mathematical construct that explains what we see and predicts

the performance of algorithms, experiments, and practical communications systems.

A consistent model can produce information formerly provided only by direct mea-

surements which are time consuming and costly. The challenge is to identify the

1
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key features that the model should capture and to construct the model in a way

that is consistent with as much of the observed channel behavior as possible without

becoming cumbersome.

Propagation models for the wireless indoor channel may be constructed from

either a deterministic or a statistical viewpoint. A statistical model can be based

on the bulk properties of channel sounding measurements that observe the channel

directly. Alternatively, we may use classical propagation theory and a knowledge

of the physical indoor environment to deterministically predict the behavior of the

channel. Ideally, there should be a firm agreement between deterministic channel

models and the statistical behavior observed in actual channels.

This thesis presents results from deterministic ray tracing simulations that

replicate the environment of indoor channel sounding measurements taken previously

by Spencer [2]. This data is used to estimate the parameters of the extended Saleh-

Valanzuela model which stochastically describes the space-time clustering structure

observed in measurements [6], [7]. Additionally, the information capacity for the

MIMO channel depends upon the amount of information about the channel that is

available to the communication system [8]. When the transmitter has full knowledge

of the channel state, the information capacity is higher than when the transmitter op-

erates blindly. In an effort to reap the benefits of informed transmitter operation, we

present a reduced parameter feedback method that increases the information capacity

closer to the case where the transmitter has full CSI.

1.1 Thesis Organization

Chapter 2 presents a tutorial on the topic of MIMO wireless channel modeling.

It begins with the matrix representation of narrowband channel propagation and

the assumptions involved. Then, the basic theory of channel capacity is presented

using elementary results from information theory. This provides the framework for

the capacity metrics used to evaluate the performance of the feedback methods in

Chapter 5.

2
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Chapter 3 describes the ray tracing simulation software used in the experi-

ments. The WISE (for Wireless System Engineering) software package was developed

by Lucent Technologies Wireless Research for simulating three dimensional wireless

transmission environments [9]. It includes a graphical interface, a power density sim-

ulator, a three dimensional environment viewer, and a versatile ray tracing simulator.

Here we describe the design of a simulation experiment using the WISE simulator to

match the indoor channel impulse response measurements taken by Spencer [2].

Chapter 4 presents the results of the ray-tracing simulation experiment de-

signed to replicate the SISO indoor channel measurements reported in [2]. Specifically,

we describe the software processing performed on the ray tracing simulator output

data and the methods used to estimate the parameters of the Space-Time Clustered

channel model for comparison with the values reported from earlier measurements.

Chapters 5 and 6 investigate some methods of reduced parameter feedback in

an effort to achieve near-optimal MIMO capacity. Chapter 5 draws from the previous

discussion of the ray-based channel model to describe a method of estimating ray

synthesis model parameters at the receiver and providing them as feedback to the

transmitter. This allows the construction of a channel model which, although imper-

fect, can be used to shape the covariance of the transmitted symbols to increase the

channel information capacity above that of the blind transmitter case and approach

the maximum capacity available for a transmitter with full channel state informa-

tion. The goal is to feed back less information than represented by the traditional

entries of the channel matrix and obtain close to full CSI capacity. Performance

results from Monte Carlo simulations show the conditions where significant bene-

fit can be obtained from parameter feedback. Finally, the algorithm is applied to

measured indoor MIMO channel data to evaluate its performance for non-synthetic

channel realizations. Chapter 6 takes advantage of the symmetry and structure of

the transmitted symbol covariance in search of even greater reductions to the feed-

back necessary to produce near-optimal channel capacity. This chapter describes two

alternative methods for determinining the covariance feedback parameters: an LS
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approach, drawing on traditional techniques, and a MAXDET method that seeks

to maximize the ergodic capacity determinant directly. The covariance methods are

demonstrated by simulation and results are presented along with processing the same

indoor channel data for comparison with the Ray Model feedback method.

1.2 Problem Statement

The goal of this thesis is to investigate the following problems:

• Use ray tracing tools to simulate the measurement conditions used by Spencer [2]

and determine the quality of the predictions by comparison to results from the

measurements. Specifically, determine the correspondence of predicted chan-

nels with the multipath measurements and estimated parameters found for the

Saleh-Valanzeula clustered model extended to include angle of departure/ ar-

rival information (SVA model).

•• Identify the most significant elements of the ray tracing simulation which de-

termine the quality of the predicted channels.

• Investigate the use of the ray synthesis channel model as a means to provide

channel state information (CSI) from the receiver to the transmitter for im-

proved information capacity. Specifically, identify methods of determining the

ray model parameters which most efficiently increase the information capac-

ity considering the amount of resources required to communicate the feedback

information.

• Investigate the use of covariance information as an alternative to the ray synthe-

sis model for improving the channel information capacity with a small quantity

of feedback information.
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1.3 Literature Review

The flood of research interest in MIMO communication systems has been trig-

gered by a number of early publications outlining the theoretical capacity of multi-

antenna systems that grows linearly with the number of array elements. Among the

most frequently cited publications are Teletar [3] and Foschini and Gans [4]. To or-

ganize the literature citations in this review, the references have been separated into

the following categories: MIMO Channel Modeling, Ray Tracing, Channel Sounding

& Measurement, and MIMO Feedback & Channel Capacity.

MIMO Channel Modeling

A variety of channel modeling approaches have been suggested for representing

MIMO communication channels. Zwick, et al [10] present a complex indoor / urban

MIMO channel model that has many features in common with the SVA model used in

this thesis. A deterministic ray tracing approach is also used to provide typical values

for their model parameters. Ge, et al [11] use the same “sum of rays” constructive

channel model in discussing the statistical properties of MIMO channel capacity with

Monte Carlo simulation results. Another frequently used MIMO channel model is the

“2 bounce model” as discussed by Gespert, et al [12] that assumes a single reflection in

the neighborhood of both the transmitter and receiver with a direct path connecting

the two. The “2 bounce model” has also been extended by Povey and Levy [13] to

allow independent variation of the transmit and receive angles based on scatterers

in the proximity of the transmitter and receiver. Liu, et al [14] create a virtual

channel model to allow analysis of multipath richness and capacity gains under “more

realistic” assumptions. They observe that the number of multipath components must

grow quadratically with the number of antennas in order to achieve the linear increase

in capacity.
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Ray Tracing

There are numerous publications that describe ray tracing techniques similar

to those used in this research. Typically ray tracing is chosen to provide predictive

information about channels which are expensive or difficult to measure. Ray tracing

calculations can be generated using several different methodologies, including uniform

theory of diffraction [15], ray launching [16] and [17], method of images [18] and Full

Wave Finite Difference Time Domain Simulation [19]. Ray tracing techniques have

been applied to many different communication problems such as urban microcells

[20], vehicle interiors [21], and global positioning systems [22].

Focusing on research that relates more closely to this thesis, Tila, et al [23]

use site-specific indoor ray tracing to predict the SNR and information capacity for

a MIMO system at 5 GHz. They present the interesting result that capacity is

significantly improved by distributing transmitter antennas to the corners of a single

room rather than concentrating them in a traditional uniform linear array (ULA).

An example of researchers comparing ray tracing predictions with measurements can

be found in the outdoor channels analyzed by Rautiainen, et al [24]. The work

of Browne, et al [19] is significant because it provides support for the 2-D planar

model assumptions used in our simulations and also presents similar observations of

time/angle clustering and time/power profiles which are linear in logarithmic space

with high degree of scatter. Their conclusions also state that the description of the

building geometry and structure is more important than description of the material

properties with the finer structural description being key to accurately predictions of

the clustering behavior. Additional support for a 2-D planar geometry model can be

found in the work of Medbo and Berg [25] where it was reported that the contributions

of the strongest 90% of scatterers in an office environment were captured within a

cone of less than 20◦ of elevation centered in the horizontal plane.

This paragraph continues the description of ray tracing literature. Zhang and

Huang [26] investigated the effects of changes in material properties while the building
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geometry was kept constant. Burr [18] uses ray tracing prediction of indoor MIMO

channels to analyze information capacity. This work also argues that the 2-D planar

model assumption is reasonable, and the results are displayed using Complementary

CDF’s of capacity. Pena, et al [27] compared ray tracing predictions of wall behavior

for two common material types (brick and metal reinforced concrete) with measure-

ments of reflection/transmission. They concluded that uniform modeling for brick

walls is well-justified, but that the presence of metal reinforcing materials produce

geometry specific deviations from uniform behavior. This justifies the addition of

metal reinforcing materials to the geometry model used for ray tracing simulations in

this research. Kim, et al [28] compared ray tracing simulations with measurements

at 5 GHz in a single large room. They found that ray tracing simulation was more

effective in predicting arrival/departure geometry than power characteristics. This

agrees with our current observations. Finally, Passerini [29] suggests a methodology

for validating ray tracing results.

The WiSE ray tracing software package has been used by numerous other

researchers to investigate the behavior of wireless systems. There are several publica-

tions that describe the software package [9] [30]. Chuah, et al [31] (and identically in

[32]) used WiSE to simulate narrowband MIMO channels to investigate information

capacity versus the number of antenna elements. They observed that the improve-

ment in waterfilling capacity over uniform power allocation was most significant at

low SNR, as will be similarly shown in our results. They also noted that the asymp-

totic channel capacity limits are overestimated because they ignore limitations which

result from correlation between array elements. A similar statement in this regard

was made by Goldsmith, et al [8]. Ling, et al [33] used WiSE to demonstrate the

degradation of capacity due to keyhole degenerate channels (which have zero correla-

tion between entries but only 1 degree of freedom) can result from a diffracting wedge

under realistic assumptions. Finally, Chua, et al [34] give example WiSE parameter

settings for indoor and outdoor scenarios. They presented results using the Comple-

mentary CDF (CCDF) of capacity and used 95% Outage Capacity. Their findings
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indicate that there are more realized capacity gains when the receiver is located closer

to the transmitter than when farther away. Also, they showed that capacity gains

result when antenna spacings are larger than one wavelength (their simulation used 3

wavelength spacing) because of reductions in the inter-element correlation even when

a strong line of sight signal is present.

Channel Sounding & Measurement

Early channel sounding experiments used a Single-input - Single Output (SISO)

architecture to keep the hardware systems simple. The ray tracing results were de-

signed for comparison with measurements taken by a SISO measurement system.

Some examples can be found in the work of Guillouard, et al (60 GHz indoor) [35]

and Courivaud, et al (2 GHz indoor) [36]. As interest in MIMO grew, simple MIMO

channel sounding systems began producing results such as Stoytchev, et al [37] (used

a single transmitter with a single moving receiver to construct 4x4 MIMO measure-

ments from 1.8 to 3.4 GHz), Batariere, et al [38] (used 2x2 OFDM system in subur-

ban outdoor setting), Stridh, et al [39] (used SISO superposition to construct MIMO

channels at 5.8 GHz), Erceg, et al [40] (used 2x2 swept frequency at 2.48 GHz with

post-processing in outdoor locations) and Kuroda, et al [41] (used Frequency Division

Multiplexing for rotating 2x2 system at 5.8 GHz).

With additional systems development, more recent channel measurements have

been taken with larger array sizes and more complex configurations. The 10x10

measurements used in Chapter 5 and 6 were obtained from a simultaneously sampled

system in this class. References describing this system can be found in [42] [43] and

[44]. Martin, et al [45] presented results from a 4x4 real-time channel sounder that

transmitted orthogonal Walsh codes and estimated the channel in real-time with a

sample time of 300 microseconds at 1.9 GHz. Their data provided results on ergodic

capacity and inter-element correlation. Another 4x4 system reported by Kermoal, et

al [46] used switched elements and a fixed velocity trolley on a linear track to probe
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indoor channels at 2.05 GHz with a sample time of 20 milliseconds. Their analysis

included spatial correlation, doppler power spectrum and the eigenstructure.

This paragraph continues the description of recent channel measurement lit-

erature. A larger system described by McNamara, et al [47] collected indoor 8x8

channel data using multiplexed arrays at both endpoints with a channel sample time

of 1.63 milliseconds at 5.2 GHz. They showed time evolution of Spatial Average SNR

and capacity with noticeable differences between Line of Sight (LOS) and Non-Line

of Sight (NLOS) channels. The NLOS channels demonstrated higher capacity even

though the average SNR increases in LOS situations. This reflects the changes in the

richness of the scattering and the degree of correlation between elements. A large,

real-time system is discussed by Hampicke, et al [48] that multiplexes 8x8 arrays

to gather the time-dependent frequency response using multi-frequency excitation at

5.2 GHz. They further processed their results to estimate the complex path gain,

time difference of arrival (TDOA), directions of departure and arrival (DOD, DOA

in both azimuth and elevation) and doppler shift of multipath components. They

set forth Capacity CCDF’s and time-evolution of channel eigenvalues versus array

rotation angle. Earlier results are presented from this same system by Richter, et al

[49]. Steinbauer, et al [50] used data taken with a similar system with a virtual 16x8

MIMO channel at 5.2 GHz. Their analysis included power-delay profiles, DOD and

DOA analysis with correlation to actual scatters, angular power spectral density, and

multipath component analysis.

MIMO Feedback & Channel Capacity

Goldsmith, et al [8] provide an excellent overview of the MIMO Channel Ca-

pacity problem along with suggestions for investigation into unsolved problems. They

describe three levels of channel feedback: CSI, instantaneous channel state informa-

tion (elements of H), short-term CDI, statistical distribution of the channel coef-

ficients with non-zero mean (typically mean and covariance of a jointly Gaussian

distribution), and long-term CDI, statistical distribution of channel coefficients that
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are assumed zero-mean and uncorrelated. In any given scenario, the level of feedback

may be different at the receiver than at the transmitter. The research in this thesis

focuses on the CSI scenario with attempts to communicate instantaneous channel

gain terms to the transmitter once they have been identified by the receiver. The

observation of clustered multipath arrivals composing the MIMO channel relates well

with the short-term (non-zero mean) observation situation. For some tests, Monte

Carlo simulations were used where the channel gain terms were independent and iden-

tically distributed which corresponds to the long-term assumption about the channel

structure.

Skoglund and Jongren [51] present a generalized framework to describe MIMO

systems where feedback information is employed. They observe that the initial quan-

tity of feedback produces the largest gains with the marginal returns decreasing as

more feedback information is provided. This is a consistent feature in the observations

made in this research. Another practical issue for feedback systems is well-illustrated

in the work of Sutivong, et al [52] who observe (for the SISO channel case) that too

much feedback information precludes the transmission of user data over the channel.

Medles, et al [53] present capacity simulations where the transmitter has varying lev-

els of information about the channel state. They conclude that the channel covariance

information is sufficient to produce near-optimal capacity and discount the value of

additonal feedback information. This could be used as motivation for the covariance

feedback methods presented in Chapter 6. Bhashyam, et al [54] demonstrate two

methods for the Multiple Input - Single Output (MISO) channel: power control and

beamsteering. Their results are presented in terms of outage performance rather than

information capacity. They also observe that the first few bits of feedback yield the

largest improvements. Another MISO channel feedback example can be found in the

work of Visotsky and Madhow [55] who utilize statistical distribution information

and present suggestions for using it effectively. Jafar and Goldsmith [56] outline nec-

essary and sufficient conditions for the optimality of beamforming feedback in MISO

Channels, and some theoretical proofs on the topic of covariance feedback for MISO

10



www.manaraa.com

and MIMO channels were presented by Jafar, et al [57]. Kang and Alouini [58] use

moment generating functions to identify the mean and variance of MIMO capacity

as a Gaussian random variable for the waterfilling and beamforming scenarios. Oy-

man, et al [59] analyze the effect of spatial correlation on the capacity of MIMO

systems. They look at the tradeoff between multiplexing and diversity gains in cor-

related MIMO channels, and determine the capacity maximizing number of transmit

and receive antennas as a function of SNR region where the total number of antenna

elements is fixed.

1.4 Contributions

This research substantiates the observations of time and angle of arrival clus-

tering reported by [6] and [7]. The deterministic ray tracing simulation results clearly

show similar groupings of ray arrivals predicted from the building geometry descrip-

tion model, and the statistical distribution of random parameters resulting from pre-

dicted data agree with previous observations. The parameter estimates derived from

predictive simulation that describe the angular distribution and arrival frequencies

of clusters and discrete rays are consistent with the values from measurements. The

behavior of the ray tracing suggests strongly that the description of the bulk materi-

als in the building (such as strict wall structure) are less important to the statistical

consistency of the predictions than description of reflective scatters (such as door and

window frames, rebar, and other metallic features).

In addition, we demonstrate that estimates of ray parameters made from the

channel transfer matrix can provide a compressed representation of channel state

information which is sufficiently accurate to allow more than 90% of the Full CSI

information capacity to be realized by a transmitter shaping the symbol covariance

using parameter feedback. This approach offers the most significant gains in low SNR

environments where the differential between Fully Informed Transmitter capacity and

Blind Transmitter capacity is the largest and the dimension of the signal subspaces

used for estimation is small compared to the number of array elements. Several
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estimation algorithms are compared, including a 2-D unitary ESPRIT estimator that

determines the transmit and receive angles jointly with their pairwise correspondence.

The parameter feedback algorithm is applied to channels measured with the 2.45 GHz

MIMO measurement platform developed in [42].

Finally, we present an alternative method of providing channel state informa-

tion in terms of the covariance of the received symbols. We show that the symmet-

ric, positive-semidefinite structure of the received symbol covariance can reduce the

feedback information required. Two methods of determining the covariance feedback

information are presented: a traditional least-squares fitting approach and a direct ca-

pacity determinant maximization approach. Simulation results provide performance

comparisons for small array sizes (3,4 and 5 elements) which show that significant

gains can be realized with a small amount of feedback, especially at low SNR values,

but that the amount of improvement offered by additional feedback terms decreases

as more feedback us supplied. The covariance feedback methods are applied to the

same MIMO measurement data to give comparisons with the ray model feedback

method. They suggest that the covariance feedback methods are computationally

burdensome for large array sizes and typically result in less attractive perfomance

than that obtained using ray model feedback.
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Chapter 2

MIMO Tutorial

This chapter presents a brief introduction to some important fundamental

principles relevant to MIMO indoor wireless channel modeling. Each section presents

one of the following topics: matrix representation of MIMO channel propagation, nar-

rowband versus wideband channels, common fading models, theoretical information

capacity of a MIMO channel, and basic array processing. These topics contributed to

my research, and it is hoped that they will prove useful to those who pursue similar

research in the future.

2.1 MIMO Channel Propagation Model

The flow of signals from a transmit antenna array through some arbitrary

channel to a receiver antenna array is typically modeled as a multiple input-multiple

output (MIMO) linear system. If some general system has T transmit antennas and

R receive antennas, the pairwise impulse response hi, j [n] describes the relationship

between the signal sent from the jth transmitter, sj [n], and the signal observed at

the ith receiver, xi[n], as a convolution

xi[n] =
∞∑

k=0

hi, j [k] sj[n− k] i ∈ {1, 2, . . . , R}, j ∈ {1, 2, . . . , T} . (2.1)

Quite often, the MIMO channel model is simplified under the assumption of

a ’narrowband’ channel where all but the first tap of all pairwise transfer functions

are assumed to be zero:

(Narrowband Assumption) ←→ hi, j [n] = 0 ∀ n �= 0 . (2.2)
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Physically, this condition arises when the frequency band of interest is sufficiently

restricted so that even if the frequency response is highly variable (as in a frequency

selective fading scenario), the segment of the channel’s frequency response over the

narrow band of interest is adequately modeled as being flat - having constant mag-

nitude and phase. The narrowband channel can also be interpreted as a scenario

where all of the significant multipaths are sufficiently coincident in time that all of

the arrivals can be combined into a single non-zero tap in all of the pairwise channel

impulse responses. As a result, the signal at the ith receiver due to the broadcast of

sj from the jth transmitter is

xi, j [n] = hi, j · sj [n] , (2.3)

where hi, j is a complex scalar. If the model needs to reflect the frequency selective

behavior of the channel, hi, j can be replaced with hi, j[n]. Using the principle of

superposition, the observed signal at the output of the ith receive antenna is the sum

of the constituent signals resulting from all T transmitters:

xi [n] =

T∑
j=1

xi, j [n] =

T∑
j=1

hi, j · sj [n] . (2.4)

Equation 2.4 can be conveniently expressed in matrix notation by letting each of the

xi’s reside in a column vector, x[n ] =
[
x1[n ] x2[n ] · · · xR[n ]

]T
and forming the

matrix product

x[n ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

h1,1 h1,2 · · · h1,T

h2,1 h2,2 · · · h2,T

...
...

...
...

hR,1 hR,2 · · · hR,T

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

s1[n ]

s2[n ]
...

sT [n ]

⎤
⎥⎥⎥⎥⎥⎥⎦ = H s . (2.5)

Notice that multiple time samples of x may be formed by stacking them in columns

as in [
x[ 1 ] x[ 2 ] · · · x[n ]

]
= H

[
s[ 1 ] s[ 2 ] · · · s[n ]

]
. (2.6)
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2.2 Information Capacity of AWGN MIMO Channel [1]

As MIMO channels promise significant increases in the rate of data transmis-

sion, we desire to quantify the theoretically maximum amount of information that

can be communicated by way of any particular MIMO channel. This result from

information theory does not provide any guidance in the construction of the signaling

and coding methods needed to achieve the maximum capacity. It simply states an

upper bound on the information capacity that any imaginable transmission scheme

may achieve.

As a starting point for this development, we take the standard narrowband

MIMO model for a system with T transmit elements and R receive elements from

Section 2.1:

x = Hs + n , (2.7)

where x ∈ �R×1 is the received signal vector, H ∈ �R×T is the MIMO channel

transfer matrix, s ∈ �T×1 is the transmitted symbol vector, and n ∈ �R×1 is the

noise vector. We assume that the noise, n, is distributed as a Circular Complex

Gaussian, or Complex Normal, with zero mean and unit, white covariance:

n ∼ CN (0, IR) .

Additionally, we assume that the channel matrix, H , is known and that the total

transmit power is constrained to be no greater than ρ:

E

{
T∑

i=1

|si|2
}

= E{sHs} = tr
(
E{s sH}) ≤ ρ , (2.8)

where E{ · } is the statistical expectation operator and tr( · ) is the matrix trace op-

erator. Define Q to equal E{s sH}, the covariance of the transmitted symbols. The

power constraint can be expressed in terms of Q as

tr(Q ) =

T∑
i=1

Qii ≤ ρ . (2.9)
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To achieve maximum information capacity, s should be chosen to maximize

the mutual information between x and s:

I (x, s) = H(x)−H(x | s) = H(x)−H(n) . (2.10)

The quantity H( z) is the entropy of z defined as:

H( z) = E{− log f(z)} , (2.11)

where f(z) is the pdf of z. Notice that since H(n) does not depend on s, maximizing

I (x, s) is equivalent to maximizing H(x).

From distribution theory, it is known that the complex distribution of highest

entropy is the circular complex Gaussian (CCG) [60]. We will use the following two

facts to construct x as a CCG random variable:

• If x,y ∈ �N×1 are uncorrelated and distributed as CCG according to x ∼
CN (mx , Rx) and y ∼ CN (my , Ry), the sum of x and y is also distributed as

CCG according to x + y ∼ CN (mx + my , Rx +Ry).

•• If x ∈ �N×1 is distributed as CCG according to x ∼ CN (mx , Rx) and the

matrix AH ∈ �N×N is non-singular, the linear transform y = AHx is also CCG

according to y ∼ CN (AH mx , A
HRxA). (Demonstrated for the real case in [61]

on p. 59).

If s is chosen to be CCG, then Hs will also be CCG as well as the sum x = Hs + n.

This results in an x of maximum entropy. Therefore, to achieve maximum capacity,

s must be chosen to be CCG distributed. Additionally, the covariance of x can be

expressed in terms of Q = cov(s) as

cov(x) = cov(Hs) + cov(n) = HQHH + IR . (2.12)
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2.2.1 Entropy of a Circular Complex Gaussian Random Vector

Here we determine the entropy of a CCG random vector. Let z ∈ �N×1 be a

CCG random vector with mean m and covariance R as in z ∼ CN (m, R).

H( s) = E{− log f(z)} = E
{
− log

(
det(πR)−1e(z−m)HR−1(z−m)

)}
= log( det(πR)) + log(e) E

{
(z−m)HR−1(z−m)

}
= log( det(πR)) + log(e) tr(R−1E

{
(z−m)(z−m)H

}︸ ︷︷ ︸
= IN

)

= log( det(πR)) + log(e) tr( IN)

= log( det(πR)) + log( eN)

= log( det(πR)) + log( det(e IN ))

= log( det(π eR)) (2.13)

2.2.2 Waterfilling Solution for Maximum Capacity

Using the result from the previous section, we now turn our efforts to deter-

mining an expression for the value of maximum capacity given that we know that

all of the vectors x,s, and n are CCG distributed. Substituting Equation 2.13 into

Equation 2.2 describing mutual information, we obtain the following:

I (x, s) = H(x)−H(n) = log( det(π e cov(x))− log( det((π e cov(n))

= log( det(π e (IR +HQHH)))− log( det((π e IR)

= log( det(IR +HQHH)) + log( det(π e IR))− log( det((π e IR)

= log( det(IR +HQHH))

= log( det(IT +QHHH))

= log( det(IT +QUΛUH)) (SVD of HHH = UΛUH)

= log( det(IT + UHQUΛ)) (Q̃ ≡ UHQU)

= log( det(IT + Q̃Λ)) ≤
T∑

i=1

log(1 + Q̃ii λ i) . (2.14)
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The inequality in the last step arises from the relation det(A) ≤ ∏N
i=1Aii for

A ∈ �N×N where the upper bound is achieved when A is diagonal.

Using this result, the solution for maximum capacity, C, can be expressed as

a constrained maximization:

C = max
Q̃ii

i=1,...,T

T∑
i=1

log(1 + Q̃ii λ i) such that

T∑
i=1

Q̃ii = ρ . (2.15)

Writing this as a Lagrange multiplier problem yields:

V =
T∑

i=1

log(1 + Q̃ii λ i) + γ

(
T∑

i=1

Q̃ii − ρ
)
. (2.16)

Setting all partial derivatives with respect to Q̃ii to zero, we obtain

∂V
∂Q̃ii

= λ i

1 + Q̃ii λ i

+ γ = 0

⇒ λ i + γ (1 + Q̃ii λ i) = 0

⇒ Q̃ii = − 1
γ − λ −1

i . (2.17)

If we define µ as a constant (independent of i) that is chosen so that
∑T

i=1 Q̃ii = ρ,

Equation 2.17 becomes

Q̃ii = µ − λ−1
i . (2.18)

Because Q̃ is a covariance matrix ( Q̃ = cov(UHx) ), it is positive semi-

definite and all of its eigenvalues must be non-negative, and because Q̃ is diagonal,

its eigenvalues are equal to its diagonal entries ( e.g. eig(Q̃) = Q̃ii for i = 1, . . . , T ).

So, it is not reasonable for any of the Q̃ii ’s to be negative. For this reason, we

introduce the (·)+ operator defined as

( z )+ = max{ 0, z } for z ∈ � . (2.19)

The final expression for maximum capacity of a MIMO channel H is

C = log( det(IT + Q̃Λ)) =
T∑

i=1

log(1 + Q̃ii λ i) where Q̃ii = (µ − λ−1
i )+ . (2.20)
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Notice that because the eigenvalues of HHH are positive ( λ i = σ2
i where the σi ’s are

the singular values ofH ) and monotonically non-decreasing ( e.g. λ1 ≥ λ2 ≥ · · · ≥ λT ),

the quantities λ−1
i are monotonically non-increasing ( λ−1

1 ≤ λ−1
2 ≤ · · · ≤ λ−1

T ). As a

result, the values of Q̃ii = µ− λ−1
i begin positive at i = 1 and decrease to potentially

become less than zero for some k + 1 < T . The effect of the (·)+ operator is to force

the Q̃ii ’s to zero for all k+1 ≤ i ≤ T . This allows k to equal the number of non-zero

entries in Q̃. Equation 2.20 is referred to as the waterfilling solution for reasons that

will be discussed in the following section.

2.2.3 Interpretation of the Waterfilling Solution for Channel Capacity

In order for the transmitter to optimally shape the covariance of its transmis-

sion, it must have knowledge of the eigenvectors of HHH (equivalent to the right

singular vectors of H) and their associated eigenvalues, λi. We can think of the

action of the waterfilling equation as selecting out the dominant eigenchannels that

compose the range of the reciprocal channel, HH , and preferentially distributing its

constrained amount of power into the eigenchannels with the largest gains. This re-

sults in the covariance of the signals arriving at the receiver, before noise addition,

being uncorrelated and optimally weighted ( HQHH is diagonal with entries equal

to λi Q̃ii ). From the definition Q̃ = UHQU , where U = [ u1 u2 · · · uT ] are the eigen-

vectors of HHH , we can see that Q = UQ̃UH . This can be interpreted as a transmit

beamformer that applies U Q̃1/2 to initially white, unit covariance symbols, s̃, as in:

s = U Q̃1/2 s̃ where cov(̃s) = IT . (2.21)

The resulting transmit symbols have covariance equal to the following weighted sum

of outer products, where k is the number of eigenchannels with non-zero allocated

transmit power:

Q =
T∑

i=1

Q̃ii ui ui
H =

k∑
i=1

Q̃ii ui ui
H . (2.22)
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It is interesting to note that this defines the transmit symbol covariance with the

same eigenvectors as HHH only replacing the eigenvalues {λi} with the weights from

the waterfilling equation, {Q̃ii}.
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Figure 2.1: Graphical representation of waterfilling eigenchannels.

The name waterfilling solution can best be understood by graphing the power

allocation to the eigenchannels as in Figure 2.1. If each eigenchannel has unit width,

we can represent λ−1
i as a “pseudo noise floor” for each channel which increases from

left to right. If the power available for transmission is symbolized by a fixed amount

of water that we pour in from above, we can see that it fills the eigenchannel with

lowest floor first and then distributes to adjacent channels until it reaches a constant

level, µ, across all of the powered channels. From this picture, we can see that the (·)+
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operator in Equation 2.20 serves to prevent the allocation of “negative” quantities of

power into unused eigenchannels. The capacity is the log of the combined product of

the eigenchannel gains and the allocated channel power with a 1 added to each term

for the contribution of the noise:

C = log

(
T∏

i=1

(λi Q̃ii + 1)

)
= log

(
k∏

i=1

(λi Q̃ii + 1)

)
. (2.23)

The base of the logarithm determines the units of the capacity result. Typically log2

is used, resulting in Capacity in units of Bits/sec/Hertz.

Another interesting feature of the waterfilling solution is its similarity to the

characteristic polynomial pA(λ) used to find the eigenvalues of a square matrix, A.

From the standard eigenvector problem, pA(λ) is defined by

Ax = λx ⇒ (A− λI) = 0

pA(λ) = det(A− λI) = c1 λ
n + . . .+ cn λ1 + cn+1 . (2.24)

Notice that the log(det(I + Q̃Λ)) from Equation 2.14 is simply the log of the charac-

teristic polynomial of Q̃Λ evaluated at λ = −1

C = log( det(IT + Q̃Λ)) = log p Q̃Λ(λ)
∣∣∣
λ=−1

. (2.25)

Because the matrices HQHH and Q̃Λ have the same eigenvalues, pHQHH(λ) and

p Q̃Λ(λ) are interchangeable. If we expand Equation 2.25 in terms of the coefficients

of p Q̃Λ(λ) as in

C = log
(
(−1)n c1 + (−1)n−1 c2 + . . .+ (−1) cn + cn+1

)
,

we can see that it is simply the log of the alternating plus-minus sum of the coefficients,

{c1 . . . , cn+1}. To further simplify the calculation, we can use the fact that Q̃ii is zero

for i > k by substituting for p Q̃Λ(λ), the polynomial of reduced order, k, which

has the non-zero eigenvalues of Q̃Λ and HQHH as its roots. A simple process for

finding this reduced order characteristic polynomial starting with a set of eigenvalues,

{λ1, λ2, . . . , λk}, by expanding the product (λ−λ1)(λ−λ2) . . . (λ−λk) can be outlined

in Matlab notation as shown below (see [62]).
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z = [ λ1 λ1 . . . λk ];

c = [ zeros(1,k) 1 ];

for loop = 1:k

c(2:loop+1) = c(2:loop+1) - z(loop)*c(1:loop) ;

end

Finally, because we know that capacity is a non-negative quantity, we can simplify

the selection of the sign of the leading coefficient by using absolute value so long as

we take the terms in a consistent order from c1, . . . , cn+1 or cn+1, . . . , c1 :

C = log( | c1 − c2 + c3 − · · · cN+1 | ) = log( | cN+1 − cN + cN−1 − · · · c1 | ) . (2.26)

This formulation is interesting because it demonstrates that capacity is solely de-

pendent upon the eigenvalues of HHH and may provide a short-cut to calculating

the capacity where the characteristic polynomial is known rather than the actual

eigenvalues themselves.

2.2.4 Optimal Capacity for Blind Transmitter Case

If the transmitter does not have any knowledge of the eigenstructure of HHH ,

it clearly cannot apply the optimal beamformer from the waterfilling solution to

shape the covariance of its transmission. As a fallback position, let us assume that

the channel transfer matrix, H , is random with i.i.d. (independent and identically

distributed) elements which are CCG with zero mean and unit variance as in

Hi,j ∼ CN (0, 1) ⇔ E(Hi,j) = 0 ; E(H∗
i,j Hi,j) = 1 , (2.27)

where a∗ denotes the complex conjugate of a. The independence of the elements of

H can be expressed as

E (H∗
i,j Hk,l ) =

⎧⎪⎨
⎪⎩

1 : (i, j) = (k, l)

0 : otherwise .

(2.28)

22



www.manaraa.com

In this situation, the maximum capacity channel should maximize the mutual infor-

mation between the joint random variables, (x, H) and the transmitted symbols, s

as in

I ((x, H)) = I (H, s) + I (x, s
∣∣H)

= I (x, s
∣∣H)

= EH

( I (x, s
∣∣H = H )

)
. (2.29)

Thus, we want to maximize

V = EH

(
log det(IR +HQHH )

)
(2.30)

subject to the maximum transmit power constraint, tr(Q) = ρ. Let the singular

value decomposition of Q be represented as Q = UDUH using the fact that Q is a

covariance matrix and therefore equal to AHA for some A ∈ �T×T . Substituting into

the previous equation, we obtain

V = EH

(
log det

(
IR + (HU)D(HU)H

))
. (2.31)

It is helpful to notice at this point, that the matrix HU is distributed identically to

H as demonstrated by

mean: E
(
{HU}i,j

)
= E

(
R∑

k=1

Hi,kUk,j

)
=

R∑
k=1

E (Hi,k)︸ ︷︷ ︸
= 0

Uk,j = 0

variance: E
(
{HU}∗i,j {HU}i,j

)
= E

(
(hH

i uj)
∗ hH

i uj

)
= E

(
uH

j hi h
H
i uj

)
= uH

j E (hi h
H
i )︸ ︷︷ ︸

I

uj = 1 , (2.32)

where hH
i is the i th row of H and uj is the j th column of U . This similarity allows

us to replace HU in Equation 2.31 with H resulting in

V = EH

(
log det

(
IR +HDHH

))
. (2.33)
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By direct comparison with Equation 2.30, we can see that Q must be identical to D

and is therefore diagonal. Our next task is to inspect the structure of the expectation

of the quadratic term HQHH :

E
(
{HQHH}i,j

)
= E

(
T∑

k=1

Hi,k QkkH
∗
j,k

)
. (2.34)

From the independence of the elements of H shown in Equation 2.28, we can see that

the expectation will be zero for all terms where i �= j, leaving us with a diagonal

matrix with the Qkk ’s on the diagonal:

E (HQHH ) = diag{Q11 , · · · , QTT } = Q . (2.35)

Using the fact that the determinant of a diagonal matrix is the product of the diagonal

elements, we can write the equation for mutual information including the power

constraint as

V =

T∑
i=1

log (1 +Qii) + γ

(
T∑

i=1

Qii − ρ
)
. (2.36)

Taking the partial derivative of V with respect to Qii and setting to zero, we can

solve for Qii as

∂V
∂Qii

= 1
1 +Qii

+ γ = 0

⇒ Qii = − 1
γ − 1 . (2.37)

The most important fact to be gained from this is that the Qii ’s are equal for all

i ∈ {1, . . . , T}. Therefore, without solving explicitly for γ, we can conclude from the

power constraint that the optimal covariance for transmitted symbols is

Qii =
ρ

T
⇔ Q =

ρ

T
I . (2.38)

It is interesting to note that when the transmitter does not have the benefit of

knowing the eigenstructure of the channel, the optimal allocation of power is to dis-

tribute an equal quantity into all eigenchannels under the assumption of independent

Rayleigh fading. The blind transmitter capacity can also represent a lower bound
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on the capacity achievable if the transmitter has only partial knowledge of the struc-

ture of the channel. Some interesting limiting cases for the blind transmitter MIMO

channel are:

as R→∞ , C → T log (1 + ρ)

as T →∞ , C → R log (1 + ρ) . (2.39)

These relationships are significant because they indicate that the capacity of the

channel increases linearly with min{T,R}.
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Chapter 3

Ray Tracing Simulation of Indoor Wireless Channels

3.1 Introduction

We recreated Quentin Spencer’s indoor wireless channel impulse response mea-

surements taken in the Clyde Engineering Building [6] using ray tracing simulation

software. This provides verification of earlier results and demonstrates the utility of

ray tracing as a means of predicting the influence of an indoor propagation environ-

ment in a system design scenario. In order to do so, the ray tracing experiment should

approach the direct channel measurements in as many respects as possible. In par-

ticular, care was taken to reproduce the measurement locations, system power level,

and the time/angle resolution of the data to suitably justify a direct comparison.

3.2 WiSE c© Simulation Software

The Wireless Research Group at Lucent Technologies in Holmdel, New Jersey

has developed a 3-D predictive simulator for wireless channel propagation referred to

as WiSE for Wireless System Engineering. It makes use of computational geometry,

building environment descriptions, and a complex propagation model to predict the

highest strength propagation paths from arbitrary transmitter and receiver locations

within a static environment [9]. Three dimensional ray-tracing is used to include the

effects of frequency, polarization, the dielectric properties of encountered materials,

diffraction around corners, and antenna directivity. To speed up the computationally

intensive task of predicting all possible illumination paths from transmitter to receiver,

only rays with power above a fixed threshold are perpetuated through the model.
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Also, rays which are outside of the three dimensional cone illuminated by reflections off

of a particular wall interface are discarded. This simulation tool allows deterministic

prediction of the impulse response of wireless channels for both time and angle of

arrival.

The primary input into the simulator is a building geometry description which

lays out the reflective surfaces in the environment as well as their properties. The lo-

cations of walls and other planar features are described by specifying the three-space

coordinates of opposing corners. Then, to describe the electromagnetic behavior, the

wall material can be specified from a pre-defined list which includes ground (no trans-

mission), wood, sheetrock, concrete (with various loss factors), metallic partition, or

glass. If these pre-defined wall material types are not sufficient, custom wall types can

be defined by specifying a stack of dielectric layers with an additional transmission

and reflection loss factor. For each layer, the thickness, dielectric constant, and con-

ductivity can be set individually. Where two non-coplanar walls meet at a single line

segment (to within an adjustable tolerance), the simulator identifies a wedge where

diffractions can occur.

To initiate a simulation of a particular broadcast realization, the simulation

is started with a parameter input file that outlines the parameters of the “system”

under test. The first system parameters identify the location, frequency, power, type,

and orientation of the transmitter(s) and receiver(s). The WiSE package has pre-

defined antenna types that include dipole, patch, and isotropic. An antenna pattern

definition file can be used to specify the antenna gain pattern of any other desired

antenna type. Second, we set the ray tracing model parameters. There are three dif-

ferent ray tracing models which include image (traditional), 2-dimensional pin cushion

(applicable to urban microcells), and 3-dimensional pin cushion (often used for roof-

top urban microcells, but quite slow). The software also allows power prediction

without ray tracing using the power law exponent model and the Keenan-Motley

model which describes angle-independent transmission/reflection coefficients and an
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adjustable power law exponent. Finally, we specify the number of bounces to con-

sider and the minimum power threshold of rays which are propagated in the model.

Depending on the complexity of the environment model and the number of bounces

being considered, the run time of the simulation can vary from 20 minutes to 4 hours.

The results of the simulation can be displayed graphically superimposed on

the environment map or output to a file in a variety of formats. The receiver coverage

option produces received power and RMS delay data for every receiver or grid point

specified. Alternatively, the path definition option produces a full definition of the

dominant paths along with their respective power contribution to each receiver. The

paths are delineated by identifying the number of bounces for each ray as well as

the 3-space end points for each path segment as the ray travels from the transmitter

to the receiver. The path definition output file is especially useful for extracting the

angles of departure/arrival and the path delay for each ray. Some typical results are

displayed graphically in Figure 3.1.

3.3 Development of the Clyde Building Environment Model

The original building geometry model was generated by converting the CAD

architectural layouts from the BYU Planning Office into the WiSE WALL format as

shown in Figure 3.2. The CAD file represented each wall as a rectangle to show its

thickness as well as position. When these rectangles were converted line-by-line into

planar wall entities in the WiSE model, each wall segment resulted in four distinct

surfaces for transmission and reflection. As a consequence, the density of interaction

surfaces in the ray tracing model was too high to allow for quick simulation, and run

times were typically around four hours per location.

We assumed that the out-of-plane contributions from reflections from the floor

and ceiling surfaces could be ignored. The entire 4th floor of the Clyde Engineering

Building was described as a collection of vertical planes with uniform wall material

properties and no reflecting floor or ceiling surfaces. In reproducing the 55 original

measurements from the Clyde Building with the ray tracing simulation, the results
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Figure 3.1: Typical results of ray tracing simulation for a single transmitter/receiver
location pair.

were qualitatively similar to the measurements. However, applying the same statisti-

cal analysis to the simulation data as had been used for the measurements produced

parameter values that were less consistent than desired. We considered that the

parameter values might be influenced by the choice of wall materials in the building

model. As the selection of material composition for all the walls was varied from sheet

rock, wood, and concrete, the results of the simulation did not change appreciably.

In consideration of the weak agreement of these initial ray tracing results, we

decided to refine the building geometry description. The primary improvement was to

focus on the location and properties of the metallic reflection surfaces in the building.

On further investigation of the architectural blueprints, it was discovered that the

exterior walls of the building have steel reinforcing rods placed vertically with 11 inch

separation between their centers. These reflective scatterers were added to the new
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Figure 3.2: Original CAD drawing of Clyde Building 4th floor.

model along with the metal door and window frames. We also included the metal

storage lockers and drinking fountains. The significant effort required to increase the

detail of the model to this level made it necessary to reduce the coverage area of

the building. By limiting the model area to the northwest quarter, we were able to

preserve the locations used in 50 of the original 55 measurement sets. The revised

model is shown in Figure 3.3.
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Figure 3.3: Revised model of Clyde Building 4th floor (northwest corner).

3.4 Selection of Simulation Parameters

In order to justify the comparison of the ray tracing simulation results with

the previously measured data, we made every effort to reproduce the measurement

conditions in the simulation. The location of the transmitter and receiver for each

experiment was dictated by the distance south and west of the northeast corner of

the room in which they were located. A look-up table in the Matlab batch script

translated the room number for each broadcast endpoint into x and y coordinates in

the geometry model. The simulated receiver and transmitter locations were deter-

mined by adding the appropriate coordinate offset for the location within each room.

The antennas at each location were modeled as isotropic sensors to remove the effects
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of a azimuthally varying antenna gain pattern in the same way that the antenna

gain pattern was removed from the measurement data during post-processing. The

frequency of the simulation was chosen to be 7.0 GHz to correspond to the frequency

at which the measurements were taken.

The ray tracing model was chosen as the image (geometric) model recom-

mended for indoor environments, and the power law was selected as R2. In an effort

to balance simulation accuracy against computation time, the maximum number of

bounces allowed for any ray was chosen to be 5. All other propagation model param-

eters were left at their default values.

The simulation parameter that was most critical in normalizing the results was

the apparent system transmit power. The ray tracing software allowed the variation

of the power level at the transmitter, but even radical changes in this parameter

had no observable effect on the results of the simulation. Instead, we normalized

the simulated transmit power by adjusting the minimum power threshold (in mW)

for rays which are propagated through the simulation environment. This parameter

seemed to have the most direct influence on the number of rays that were detected

at the receiver. We selected a value for the power threshold which resulted in the

total number of rays generated after resolution screening accumulated over all of the

simulation sets being equivalent to the number of arrivals detected in the measurement

data summed over all 50 locations. Figure 3.4 shows the variation in the total number

of ray arrivals as the value of the power threshold changes.

The total number of CLEAN peaks detected in the measurement data over

the 50 locations of interest was 2213. By choosing the value of the power threshold

to be 2.6x 10−7, the total number of rays produced by the simulation after resolution

processing was 2192. If the transmitter power was taken to be 1 mW, the equivalent

SNR of the system would be 10 log10(
Ptransmit

Pnoise
) = 10 log10(

1
2.6×10−7 ) = 65.9 dB.
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Figure 3.4: Total number of rays versus power threshold parameter value.
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Chapter 4

Comparison of Ray Tracing Simulation Results with

SISO Channel Measurements

4.1 Introduction

We replicated the indoor channel measurements with the WiSE software pack-

age using the normalized simulation parameters discussed in Chapter 3. The original

measurements were made by transmitting a chirp signal centered at 7 GHz from a sta-

tionary dipole antenna. A network analyzer recorded the channel frequency response

at the receiver where a dish antenna was rotated in 2◦ increments between chirps

through a full circle to measure the channel response as a function of arrival angle.

The channel impulse response was calculated by transforming the frequency response

back to the time domain, and discrete arrivals were detected by finding replicas of the

system point spread function with successive subtraction. The ray tracing simulator

recreated the 50 measurement location pairs from the northwest corner of the 4th floor

of the Clyde Engineering Building with parameters chosen to most closely match the

conditions of the measurement data. By processing the simulation output files, we

were able to gather data on the time and angle distribution of the dominant arrivals

predicted from the building environment model. The analysis software filtered the ray

arrivals using the same resolution characteristics as the original measurement hard-

ware. The net result was to synthesize a spatio-temporal impulse response where the

discrete ray arrivals are analogous to the arrivals detected in the measurement data.

Spencer observed that the measured channel impulse response fit a model similar to

that proposed by Saleh and Valenzuela [7]. By grouping ray arrivals into clusters, the
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spatial impulse response information could be analyzed statistically to estimate the

values of the model parameters [2]. When an identical analysis was applied to the

spatial impulse response information produced by the ray tracing software, the results

corresponded very closely to the measurement observations both in the structure of

the spatial clustering and in the values of the model parameter estimates.

4.2 Synthesis of the Spatial Impulse Response

We used Matlab scripts to extract the information from the ray tracing pre-

dictions for each transmitter/receiver location pair. Parsing the path definition output

file gave us the 3-D coordinates of each bounce location along the path traveled by

each ray along with its predicted power contribution at the receiver. The departure

and arrival angles were calculated from the directions of the first and last path seg-

ments, and the sum of the lengths of the path segments determined the path delay

for each ray.

The original measurement experiment had a minimum resolution of 0.5 ns in

time and 2◦ in angle. The software processing duplicated this effect by creating a

resolution grid with identical spacing. When multiple arrivals occurred in a single

cell, all but the first arrival were discarded. Of the 2,459 rays initially predicted by

the simulator, only 2192 remained after resolution screening.

The predicted spatial impulse response of the channel for each location can

be represented on a scatter plot where each ray is assigned an x-y location from its

angle of arrival at the receiver and its path delay. The spatial clustering structure

described by the extended Saleh-Valanzuela model in [6] is immediately apparent in

the simulated channel response as demonstrated in Figure 4.1. The channels repre-

sented in this figure demonstrate that although there is definite correlation between

the measured and simulated channels, the agreement is more likely to be on a cluster

scale rather than matching individual ray arrivals.
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Figure 4.1: Comparison of time-angle plots for measured channel (left) and synthe-
sized channel response (right) at location 21 (top) and location 9 (bottom).

4.3 Space-Time Clustered Channel Model [2]

The time/angle clustering structure observed in the indoor channel response

measurements is described by a spatially extended model proposed by Spencer in

[2] and [6] based on earlier time-only channel propagation modeling done by Saleh

and Valenzuela [7]. The model describes the indoor propagation channel response

as a collection of clusters which are formed from a sum of rays which arrive at the

receiver localized in both time and angle of arrival. The time/angle impulse response
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is described in [6] as:

h(t, θ) =
∞∑
l=0

∞∑
k=0

βkle
jφklδ(t− Tl − τkl)δ(θ −Θl − ωkl) , (4.1)

where the sum over l represents the clusters, and the sum over k represents the rays

within each cluster. The electrical phase of each ray, φkl, is assumed to result from

an independent and identically distributed uniform random process over the interval

[0, 2π).

The magnitude of each ray, βkl, is modeled as a Rayleigh distributed random

variable with mean square value described by a doubly decaying exponential curve as

illustrated in Figure 4.2. The mean squared power of the rays is assumed to decay

with time within the decaying envelope of the mean squared cluster power. The

mathematical expression for the mean of the power distribution as a function of time

is:

β2
kl = β2(Tl, τkl) = β2(0, 0) e−Tl/Γ e−τkl/γ , (4.2)

where β2(0, 0) is the average power of the first arrival of the first cluster and is derived

as explained in [2] and [7] as a function of the separation distance between the trans-

mitter and receiver, the RF wavelength of the system, and the gain of both antennas.

The parameters Γ and γ represent the time constant of the exponential decay of the

magnitude envelope with cluster delay time and ray delay time respectively.

The time of arrival for clusters and rays within clusters is dictated by inde-

pendent Poisson processes with rate parameters Λ and λ respectively. As a result,

the time intervals between arrivals (of either clusters or rays) follow continuous expo-

nential distributions conditioned on the time of arrival of the previous cluster or ray

as described in the following:

p (Tl|Tl−1) = Λ e−Λ(Tl−Tl−1),

p (τkl|τ(k−1)l) = λ e−λ(τkl−τ(k−1)l),

Tl−1 < Tl < ∞ (4.3)

τ(k−1)l < τkl < ∞ . (4.4)

One important consequence of the conditional distribution of the times of discrete
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Figure 4.2: Mean value of ray power, β2
kl, as a function of time.

cluster and ray arrivals is that we can use the intercluster arrival times (relative clus-

ter arrival times) to estimate the cluster arrival rate parameter, Λ, and the intracluster

arrival times (relative ray arrival times) to estimate the ray arrival rate parameter,

λ. These results are derived in Section 4.5.2 on page 44.

The main contribution of this channel response model is its description of the

angular clustering of arrivals at the receiver. The angle at which each ray arrives

at the receiver is specified relative to the mean arrival angle of all the rays in its

parent cluster, Θl. The deviation of each ray’s arrival angle from the mean angle

in the cluster is modeled by the parameter ωkl, which is taken to have a Laplacian

distribution with standard deviation σ:

p(ωkl) =
1√
2σ

e−|√2ωkl/σ| . (4.5)

In proposing this model in [6], Spencer discusses the potential for correlation

between the time and angle of each ray’s arrival. From his observations that scatter

plots of the time and angle of cluster or rays relative to the time and angle of the first

cluster or ray displayed no correlation, the time and angle distributions are concluded
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to be independent resulting in cluster and ray parameters whose probability densities

are separable functions:

p(Tl,Θl|Tl−1,Θ0) = p(Tl|Tl−1) p(Θl|Θ0) (4.6)

p(τkl, ωkl|τ(k−1)l) = p(τkl|τ(k−1)l) p(ωkl) . (4.7)

This allows the time parameters for clusters and rays to be estimated independently

from the corresponding angular parameters.

4.4 Cluster Identification

Once we have generated the time/angle channel impulse response from ei-

ther measured or simulated data, we need to group the arrivals into temporo-spatial

clusters in preparation for estimating the parameter values for the model. We used

the original manual cluster finding method proposed by Spencer [2] using a graph-

ical user interface. When the clusters are sufficiently separated and the number of

data sets is not too high, this method can be reasonably practical and repeatable.

At the normalized power level used for the simulations, the resulting clusters were

well separated. However, when simulating higher power levels, the clusters can have

heavily populated tails in their angular spread such that neighboring clusters will

overlap significantly and cannot be well identified using this simple graphical cluster

identification algorithm. Figure 4.3 shows an example of cluster overlap at higher

power levels and the difficulty of visually separating arrivals into their parent clusters

without additional information such as amplitude decays.

In addition, we observed that the values of the model parameter estimates (par-

ticularly the angular spread parameter, σ) could be significantly affected by changing

the assumptions made during cluster identification. As an example, we re-clustered

the simulation data from the original building geometry model with uniform sheet

rock wall composition under the assumption that the clusters were wider and longer.

Figure 4.4 shows the variation in the clustering strategies applied to the same data.

The effect on the model parameter estimates using the wide/long clustering strategy
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Figure 4.3: Comparison of cluster overlap as the simulated power level is increased.

was most noticeable in the radical increase in the estimated standard deviation of the

angular spread distribution, σ. The cluster arrival rate, λ was essentially unchanged.

Table 4.1 compares the parameter estimates resulting from each clustering strategy.

An additional effect of assuming clusters with wider angular spread is that the to-

tal number of identified clusters is sharply reduced. Where the quantity of relative

cluster arrival time data available to estimate the cluster arrival rate parameter, Λ,

is limited, the reduction of cluster data in the cluster identification stage may bring

the variance of this estimate into question. From these observations, we recognize

the limitations associated with manual cluster identification. Because the clusters in

this simulation data were distinct and non-overlapping, it was easy to visually sepa-

rate arrivals into clusters without using additional information or resorting to more

Table 4.1: Comparison of model parameter values using different cluster identification
strategies.

Model Parameter Narrow Clusters Wide Clusters
σ 16.1◦ 62.9◦

1/λ 1.65 ns 1.56 ns
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Figure 4.4: Comparison of cluster strategies applied to identical data.

complex automatic clustering methods. Also, because the number of distinct cluster

groups per data set was low, only radical variation in the clustering strategy could

affect the cluster grouping. As long as a reasonable strategy was applied consistently

over all of the data sets, the cluster identification results were sufficiently repeatable

to avoid introducing variations into the model parameter estimates.

4.5 Estimation of Model Parameters

In order to justify a direct comparison of the parameter estimates derived

from the simulated channel response with those from the SISO measurements, we

need to apply identical analysis to both sets of data. We used the original Matlab

scripts written by Quentin Spencer to calculate the Least Squares (LS) estimates of

the model parameters from data describing the relative angles of arrival for rays and

the relative times of arrival for rays and clusters. These estimators select the value

of the parameter which minimizes the sum of the squared error of the distribution

curve to the histogram of the data as described in the following sections. In addition,

the power decay rate parameters for both clusters and rays were estimated using the

same LS linear regression approach used on the previous data.
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4.5.1 Laplacian Distributed Parameters

As described in the Space-Time Clustered Channel Model of [2] and [6], the

angular spread of a cluster around its mean angle follows a zero-mean Laplacian

Distribution and is described by the following probability density function:

p (ωkl, σ) =
1√
2σ

e−|√2ωkl/σ| . (4.8)

The zero-mean Laplacian Distribution is fully specified by a single parameter, σ, which

represents the standard deviation of the distribution. The mean of the distribution

is always zero, but the width of the pdf is determined by σ. Large values of σ result

in a very wide, flat curve indicating higher probabilities of arrival angles farther from

the mean than for a lower value of σ. The estimator should select the value of σ

which “best” fits a zero-mean Laplacian distribution to the values of arrival angles

represented in the data.

The first step is to form a histogram to measure the relative frequency of

values in the data. If we view x1, x2, . . . , xn as the set of n data values for the angles

of arrivals for rays relative to the mean cluster arrival angle, we choose the range for

the histogram bin centers using the minimum magnitude present in the data in the

following way:

a = −max
i
| xi | b = + max

i
| xi | . (4.9)

For an N bin histogram, the bin centers, c1, c2, . . . , cN , are defined as:

ci = a +
(i− 1) (b− a)

N − 1
i = 1, 2, . . . , N . (4.10)

The bin edges delineate the partition of the range of values and can be expressed in

terms of the bin centers, c1, c2, . . . , cN , as:

P1 (−∞, c1+c2
2

]

P2 ( c1+c2
2
, c2+c3

2
]

P3 ( c2+c3
2
, c3+c4

2
]

...
...

PN ( cn−1+cn

2
,∞) ,

(4.11)
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where partitions P2, . . . , PN−1 are of width (b− a)/(N − 1). The number of samples

in bin Pk can be expressed in terms of the cardinality of the set:

nk = | { xi | xi ∈ Pk } | . (4.12)

The normalized histogram is then formed as an ordered set of relative frequencies,

h1, . . . , hN , where

hk =
nk

n
k = 1, 2, . . . , N . (4.13)

The Least Squares (LS) criterion for selecting the “best” value of σ to fit the

relative angle of arrival data is defined in terms of the normalized histogram and the

parameterized zero-mean Laplacian distribution, p (ωkl, σ):

σLS = arg min
σ

⎧⎨
⎩

N∑
k=1

∣∣∣∣∣∣hk −
∫
Pk

p (ωkl, σ) dPk

∣∣∣∣∣∣
2⎫⎬
⎭ . (4.14)

The integral in Equation 4.14 can be written for the zero-mean Laplacian distribution

in the following closed form derived below where Pk is the interval (c, d] :

F =

∫
Pk

p (x, σ) dPk =

∫ d

c

1√
2σ

e−|√2x/σ| dx (4.15)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

(e
√

2d/σ − e
√

2c/σ) : c, d ≤ 0

1
2

(2− e
√

2c/σ − e−
√

2d/σ) : c ≤ 0, d ≥ 0

1
2

(e−
√

2c/σ − e−
√

2d/σ) : c, d ≥ 0

Case I : c, d ≤ 0

F =

∫ d

c

1√
2σ

e
√

2x/σ dx

=
1

2
e
√

2x/σ

∣∣∣∣d
c

=
1

2
(e

√
2d/σ − e

√
2c/σ)
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Case II : c ≤ 0 , d ≥ 0

F =

∫ 0

c

1√
2σ

e
√

2x/σ +

∫ d

0

1√
2σ

e−
√

2x/σ dx

=
1

2
e
√

2x/σ

∣∣∣∣0
c

− 1

2
e−

√
2x/σ

∣∣∣∣d
0

=
1

2
(2− e

√
2c/σ − e−

√
2d/σ)

Case III : c, d ≥ 0

F =

∫ d

c

1√
2σ

e−
√

2x/σ dx

= −1

2
e−

√
2x/σ

∣∣∣∣d
c

=
1

2
(e−

√
2c/σ − e−

√
2d/σ) .

The Laplacian curve fits to simulated angle of arrival data use the LS estimator for σ

described in Equation 4.14 with the number of bins, N , chosen to be 100 to match the

Laplacian fits for the SISO data. The LS estimate of σ for simulated data was 23.4◦

as compared with 25.5◦ obtained from the measurements. The zero-mean Laplacian

fits are compared in Figure 4.5 where the “best fit” distributions are superimposed

over the normalized histograms.

4.5.2 Exponentially Distributed Parameters

The discrete arrivals of clusters and rays within clusters is described in the

Space-Time Clustered Channel Model using independent Poisson processes with rate

parameters Λ and λ respectively. The Poisson process arises from the following as-

sumptions about the occurrence of discrete events (This development of the Poisson-

Exponential relationship closely follows material found in [63]):

(i) The probability of an event occurring during a very small interval of time from

t to t+ ∆t is λ ·∆t,

(ii) The probability of more than one event occurring during the interval from t to

t+ ∆t is small enough to be ignored,

44



www.manaraa.com

−180 −90 0 90 180
0

0.02

0.04

0.06

0.08

0.1

0.12

relative arrival angle (degrees)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

σ = 25.5°

Measurements

−180 −90 0 90 180
0

0.02

0.04

0.06

0.08

0.1

0.12

relative arrival angle (degrees)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

σ = 23.5°

Simulation

Figure 4.5: LS Laplacian fit to angle of arrival data from SISO measurements(left)
and ray tracing simulation(right).

(iii) The probability of an event occurring between t and t+ ∆t does not depend at

all on whatever occurred before time t.

Under these conditions, we can express f(x, t), the probability that x events occur

during a time interval of length t using the Law of Total Probability as the probability

that x − 1 events have occurred in the interval t − ∆t times the probability that 1

event occurs between t−∆t and t added to the probability that x events occurred in

the interval t−∆t times the probability that an event does not occur between t−∆t

and t:

f(x, t) = f(x− 1, t−∆t) λ ·∆t+ f(x, t−∆t) (1− λ ·∆t) . (4.16)

We can make use of this to show that the derivative of f(x, t) is formed as:

d[f(x, t)]

dt
= lim

∆t→0

f(x, t+ ∆t)− f(x, t)

∆t
(4.17)

= lim
∆t→0

f(x− 1, t)λ ·∆t+ f(x, t)(1− λ ·∆t)− f(x, t)

∆t

= lim
∆t→0

f(x− 1, t)λ ·∆t− f(x, t)λ ·∆t
∆t

= λ [f(x− 1, t)− f(x, t)] .
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Using substitution, it can be shown that the system of differential equations formed

by Equations 4.16 and 4.17 can be solved by the Poisson distribution function

p (x, λt) =
(λt)x e−λt

x!
(4.18)

for any value of x = 0, 1, 2, . . . ,∞. We are particularly interested in the continuous

distribution which describes the waiting time between events which we will represent

with the random variable X. This can be identified by examining the cumulative

distribution function:

F (y) = P (Y ≤ y) = 1− P (Y ≥ y) (4.19)

= 1− P (0 events in time interval of length y)

= 1− p(0, λy) (from Eq. 4.18)

= 1− (λy)0 e−λy

0!

=

⎧⎪⎨
⎪⎩

1− e−λy for y > 0

0 for y ≤ 0 .

If we differentiate with respect to the time variable, y, we find that the probability

density function for times between events is

f(y) =
dF (y)

dy
=

⎧⎪⎨
⎪⎩
λ eλy for y > 0

0 for y ≤ 0

(4.20)

which is exactly the exponential distribution we described for the relative times of

cluster and ray arrivals in Equations 4.3 and 4.4 on page 37. The significant result of

this development is that it becomes possible to estimate the rate parameter of a Pois-

son process using data that represent the relative times between event occurrences.

If we take the absolute times of arrivals for n + 1 clusters, T1, T2, . . . , Tn+1 ,

and form the n relative times of cluster arrivals as

xi = Ti+1 − Ti i = 1, 2, . . . , n , (4.21)

46



www.manaraa.com

we can re-write Equation 4.3 in terms of xi as:

p (xi , Λ) = Λ e−Λ xi . (4.22)

In an analogous way, when xi represents the relative times of n+ 1 ray arrivals, as in

xi = τ(i+1)l − τi l i = 1, 2, . . . , n , (4.23)

the distribution in Equation 4.4 becomes:

p (xi , λ) = λ e−λ xi . (4.24)

Note that these exponential distributions are completely specified by a single param-

eter, Λ or λ respectively which is equal to 1 over the mean of the distribution and 1

over the standard deviation.

The next step is to form the normalized histogram for the relative event time

data in the same way as the exponential LS estimator originally used for the SISO

Channel measurements. The range of the histogram was determined by

a = round{max
i

xi} (4.25)

and partitioned into N bins:

P1 [0, a
N

)

P2 [ a
N
, 2a

N
]

P3 [2a
N
, 3a

N
]

...
...

PN [ (N−1) a
N

, a) .

(4.26)

The number of samples in bin Pk can be expressed in terms of the cardinality of the

set:

nk = | { xi | xi ∈ Pk } | . (4.27)

The normalized histogram is then formed as an ordered set of relative frequencies,

h1, . . . , hN , where

hk =
nk

n
k = 1, 2, . . . , N . (4.28)
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The Least Squares (LS) criterion for selecting the “best” value of Λ (or λ as

appropriate) to fit the relative event time data is defined in terms of the parameterized

exponential distribution, p (xi,Λ) and the normalized histogram,

ΛLS = arg min
Λ

⎧⎨
⎩

N∑
k=1

|hk −
∫
Pk

p (xi,Λ) dPk|2
⎫⎬
⎭ . (4.29)

The integral in Equation 4.29 can be written for the exponential distribution in closed

form where Pk is the interval [c, d) :∫
Pk

p (xi,Λ) dPk =

∫ d

c

Λ e−Λ x dx = −e−Λ x
∣∣∣d
c

(4.30)

= e−Λ c − e−Λ d .

The exponential curve fits to relative cluster and ray arrival data use the LS

estimator for Λ and λ described in Equation 4.29 with the number of bins, N , chosen

to be 100 to match the exponential fits for the SISO data. The LS estimate of the clus-

ter arrival rate parameter, 1/Λ, predicted from the ray tracing simulation was 18.94

ns as compared to the value of 16.8 ns estimated from measurements. The simulated

data for ray arrival rate resulted in an LS estimate for 1/λ of 5.97 ns to be compared

with the measurement estimate, 5.17 ns. The “best fit” exponential distributions

for relative cluster arrival times and relative ray arrival times are shown comparing

simulation results with SISO measurements in Figures 4.6 and 4.8 superimposed over

the normalized histograms.

In both of the exponential Λ fits, the points of the normalized histogram are

widely scattered around the LS curve. This scatter results from the relatively few

samples available for relative cluster arrival times. In both the measurements and

simulation data, there were 123 relative cluster times as compared to 2165 (measured)

and 2029 (simulated) relative ray arrival times available for estimating λ. To reduce

the noisy appearance of these fits, the plots can be represented as complementary
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Figure 4.6: LS Exponential fit to relative cluster arrival times for measurements (left)
and ray tracing simulation (right).

cumulative distributions which smooth the functions by integration:

1−
i·a
N∑

k=0

hk i = 1, 2, . . . , N (4.31)

1−
∫ i·a

N

0

p (x,Λ) dx i = 1, 2, . . . , N .

These representations of both the Λ and λ fits are shown in Figures 4.8 and 4.9. It

is hard to evaluate the quality of the fits when the complementary cdf’s are shown

on a linear scale, so they are depicted on semilog scales where the fitted distributions

appear linearly and it is easier to observe the behavior of the data over several orders

of magnitude. It is interesting to note how the estimate of λ varies as the number of

bins, N , changes. Figure 4.10 shows the LS estimates of 1/λ for both measured and

simulated ray arrival data as N varies from 10 to 300. At N ≈ 110, the error metric

reaches a minimum point for the measured data before rising again as the simulated

data error continues to decrease. If we repeat the original estimates using

N = 100 bins in the histogram, the values are nearly identical: 5.86 ns (mea-

sured) and 5.87 ns (simulated). Because the simulated and measured parameters

maintain their agreement over a range of N values, we can maintain confidence that
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Figure 4.7: LS Exponential fit to relative ray arrival times for measurements (left)
and ray tracing simulation (right).

the simulation is reasonably reproducing the observed model behavior. However, this

provides a reminder of the subjectivity associated with LS curve fitting and it sensi-

tivity to arbitrary estimator parameters. The estimates of 1/Λ are insensitive to N .

4.5.3 Amplitude Decay Rate Parameters

The Γ and γ parameters represent the exponential decay time constant in the

envelope of the cluster and ray amplitude terms as described in Equation 4.2 and

Figure 4.2. In order to make comparisons with estimates of these parameters taken

from the SISO channel measurements in [2], we gathered ray and cluster amplitude

data generated with the ray tracing software, normalized it, and performed the LS

linear regression on the amplitude exponent. The most critical step in the process

was to normalize the quantities used for the time and amplitude of the data points.

The relative delay of each ray in the simulation was derived by dividing the total

path length from transmitter to receiver and dividing by the speed of propagation.

The arrival time and amplitude of an individual cluster was taken to be the time and

amplitude of the first ray arrival identified within that cluster.
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Figure 4.8: Log CCDF of relative cluster arrival times for measurements (left) and
ray tracing simulation (right).

The cluster amplitude decay parameter, Γ, was estimated by collecting the

cluster arrival times and amplitudes for a single simulation set. The cluster with the

shortest path delay was taken as the reference with time t0 and amplitude a0. The

remaining clusters were normalized in both time and amplitude by subtracting t0

from their path delays and dividing their amplitudes by a0. In a set the C clusters,

this results in (C − 1) normalized time/amplitude data points. The data points were

collected over all simulation sets, and we took the natural logarithm of the amplitudes

to obtain their normalized exponential dependence with time. Γ was estimated by

curve fitting the line (representing an exponential decay curve) to minimize the mean

squared error resulting in an estimate of Γ = 18.87 ns.. The scatter plot of the

simulated cluster amplitude versus time is shown with the Γ estimation curve fit in

Figure 4.11.

An analogous estimation procedure was applied for the ray amplitude decay

parameter, γ. For each cluster, the ray with the shortest path delay was taken as the

reference with time t0 and amplitude a0. The subsequent rays arriving in the cluster

were normalized in time by subtracting t0 and in amplitude by dividing by a0. These

normalized points were aggregated over all clusters and all simulation sets, and the

natural logarithm was applied to obtain the exponent of the normalized amplitude.

51



www.manaraa.com

0 20 40 60 80 100
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

delay(ns)

1−
cd

f

1/λ = 5.17 ns

Measurements

0 20 40 60 80 100
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

delay(ns)

1−
cd

f

Simulation

1/λ = 5.97 ns

Figure 4.9: Log CCDF of relative ray arrival times for measurements (left) and ray
tracing simulation (right).

The γ parameter was chosen to minimize the squared error of the exponential curve

fit in log coordinates. The scatter plot of the simulated ray amplitude versus time is

shown in Figure 4.12 along with the γ estimation curve fit.

The plot in [2] presenting the ray amplitude data and γ estimation used a 5

data point averaging filter to reduce apparent clutter in the figure. This has the addi-

tional effect of reducing the apparent scatter of the data around the fit. For consistent
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Figure 4.10: Estimates of 1/λ versus N (left) and LS metric (right).
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Figure 4.11: Plot of normalized cluster amplitude vs. relative delay for measurements
(left) and ray tracing simulation (right).

comparison, a similar filter was applied to the data in Figure 4.12 to produce Figure

4.13 which is very consistent with the figure from the measured data.

The significant variance of the data around the fit lines in these plots is similar

to that observed in the measurement data and reflects a low degree of confidence in

the Γ and γ parameter estimates. One can also notice the artificially sharp lower

threshold of the ray amplitudes shown in Figure 4.12 caused by the behavior of the

software threshold parameter, which discards rays below a minimum power level from

the simulation. Because of the inconsistent behavior of the power related controls of

the ray tracing simulation software discussed in Section 3.4, the value of the amplitude

decay time estimates may be somewhat discredited, but this may be less important

than the agreement with the overall trend.

4.6 Comparison of Model Parameter Estimates

A summary comparing the model estimates derived from the ray tracing sim-

ulation data with those reported from the SISO measurements is shown in Table

4.2. The most exciting feature is the excellent agreement with the spatio-temporal

parameters that describe the shape of the clusters predicted and measured in this

53



www.manaraa.com

0 20 40 60 80 100 120 140
10

−2

10
−1

10
0

10
1

10
2

relative delay (ns)

no
rm

al
iz

ed
 r

el
at

iv
e 

am
pl

itu
de

Measurements

γ = 28.6ns

0 50 100 150 200 250
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

relative delay (ns)

no
rm

al
iz

ed
 r

el
at

iv
e 

am
pl

itu
de

Simulation

γ = 58.8 ns

Figure 4.12: Plot of normalized ray amplitude vs. relative delay for measurements
(left) and ray tracing simulation (right).

indoor environment. The width of the zero-mean Laplacian distribution for angular

deviation within clusters is predicted within 10% of the measurement value. Likewise,

the arrival rates for both clusters and individual rays are predicted within 15% of the

observations. The quality of the agreement does not hold for the amplitude decay

rate parameters. However, these parameters are estimated from data with very high
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Figure 4.13: Plot of normalized ray amplitude vs. relative delay for measurements
(left) and ray tracing simulation (right) with 5 point averaging filter applied.
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variance, and the artificially sharp minimum ray power threshold adds an effect to

data that is not reflected in the measured data. Also the inconsistency of the ray

tracing simulation’s power related outputs casts doubt on the reliability of this in-

formation. Overall, the ray tracing simulation reproduces the previously observed

space-time clustering structure in a reasonably consistent statistical sense. It does

not yield ray-for-ray information that appears consistent with the CLEAN peaks de-

tected in the measured data. We can also conclude that the integrity of the statistical

clustering structure is dependent on a building geometry description that focuses on

the locations of conductive scatterers more than on the simple bulk architechural

shapes.

Table 4.2: Comparison of model parameter values from simulated and measured data.

Parameter Description Measured Data Simulated Data

σ Cluster Angular
Standard Deviation

25.5◦ 23.4◦

1/Λ Cluster Arrival Rate 16.8 ns 18.94 ns

1/λ Ray Arrival Rate 5.17 ns 5.97 ns

Γ Cluster Amplitude
Decay Rate

33.6 ns 18.9 ns

γ Ray Amplitude
Decay Rate

28.6 ns 58.8 ns

4.7 Conclusions

These results indicate that ray tracing is an effective tool for predicting the

statistical behavior of indoor wireless environments. We did not observe a direct

correlation one-to-one of individual predicted rays to arrivals detected in measured

data, but there was strong similarity in the prediction of cluster structures to clusters
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measured in the channel response. The results obtained from ray tracing depend

strongly on the level of detail used to describe the broadcast enviroment and upon

the methods of grouping arrivals into clusters. We found that the description of

the reflective surfaces in the environment were the most significant determinant of

the behavior of the simulation. The ray tracing simulations were more useful for

predicting the direction-related and time-related behavior of the channel than for

describing its power-related characteristics.
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Chapter 5

Ray Model Feedback for Improved Capacity

In order for the transmitter to shape the transmitted symbols with optimal

covariance for maximum information capacity, it must have some knowledge of the

structure of the MIMO channel. The simplest way to obtain this information is to

assume that the uplink channel and the downlink channel are reciprocal:

Hdown = HH
up ,

where we arbitrarily define the transmission from the transmitter to the receiver as

the downlink and the transmission in the opposite direction as the uplink. The user

at each endpoint of the link is able to estimate the current channel transfer matrix

using a pre-arranged training sequence sent by its counterpart or some other method

and uses this information to shape the covariance of its transmission appropriately.

In cases where the channel is not reciprocal – for example, the case of a frequency

division duplexing system where uplink and downlink transmissions are assigned to

distinct frequencies with dissimilar MIMO transfer behavior – only the receiver is

able to estimate the channel and must return some portion of this information to the

transmitter.

We propose the following ray parameter feedback algorithm as an alternative

to sending full H or subspace information in situations where the transmitter does not

have the benefit of knowledge or estimates of the downlink channel transfer function.

We begin with the assumption that the channel matrix can be reasonably represented
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by the ray synthesis model given by [64]

H =

Nrays∑
i=1

a rcv(θi) βi axmit(φi)
H , (5.1)

where axmit(φ) ∈ �T×1 and a rcv(θ) ∈ �R×1 are the steering vectors for the transmit

and receive arrays and βi is the complex ray gain for the i th ray. The model can also

be expressed conveniently in matrix form as

H = Arcv BAH
xmit , (5.2)

where the following matrices are defined:

Arcv = [ a rcv(θ1) a rcv(θ2) · · · a rcv(θN ) ] , (5.3)

B = diag{ [ β1 β2 · · · βN ]} ,
Axmit = [ axmit(φ1) axmit(φ2) · · · axmit(φN) ] .

The receiver will estimate the parameters Nrays and (θi, βi, φi) for each ray and op-

tionally k, the number of non-zero weighted eigenchannels in the waterfilling solution

covariance. These are fed back to the transmitter where H is synthesized according

to Equation 5.1 and the eigendecomposition of HHH performed in preparation for

the waterfilling solution of the transmit MIMO beamformer for optimal capacity. If

k is included, this amounts to Nrays complex values and (2Nrays + 1) real values or

equivalently, (4Nrays + 1) real valued items. It is not necessary that the value Nrays

be fed back as it is simply the cardinality of the set of ray parameters, (θi, βi, φi).

Also, k may be treated as an integer rather than a floating-point value.

5.1 Considerations for Evaluating Performance

In the analysis of any sub-optimal feedback of covariance information for

achieving MIMO capacity, we can never hope to exceed the upper bound stated by the

waterfilling solution when the transmitter has full knowledge of H . Conversely, if the

feedback process does not achieve an improvement over the blind transmitter solu-

tion for capacity, we would not view the extra effort of estimation and feedback to be
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worthwhile. These upper and lower bounds will be used to evaluate the performance

of the ray parameter feedback algorithm.

Ideally, we would like to return the least possible amount of feedback infor-

mation to the transmitter to impose the smallest possible overhead on link resources

available for sending user data. A brute force feedback method might call for the

receiver to send all of the complex entries of the channel matrix, H ∈ �R×T , repre-

senting 2RT real scalars of information. The transmitter would then compute the

eigendecomposition of HHH and form the MIMO beamformer using the waterfilling

solution. Alternatively, if sufficient computational resources are available to the re-

ceiver, the quantity of feedback information may be reduced by sending only the k

non-zero gain factors and the associated eigenvectors, resulting in k real values and

kT complex values where k is typically less than T for all but the highest values of

SNR. This subspace information would require k (2 T + 1) real valued feedback items

and allow the transmitter to form the optimum MIMO beamformer without signif-

icant additional calculation. It is hoped that the feedback methods described here

will achieve significant improvements upon the uninformed channel capacity using

less than the full amount of feedback (ie. (4Nrays + 1)� k (2 T + 1) ).

5.2 Ray Parameter Estimation

To identify the feedback information, we need to estimate the number of dis-

crete rays present in the channel, Nrays, and the parameters to best describe them in

the model (φi, βi, θi) for i = 1, . . . , Nrays. Assuming that we start with either knowl-

edge of the MIMO channel transfer matrix, H , or an estimate of it Ĥ, we estimate

the number of rays by minimizing a metric function between the channel matrix syn-

thesized from the model parameter estimates, Hmodel, and our information about the

channel, H or Ĥ, as shown in Figure 5.1. We consider two metric functions, Least
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Squares and Information Capacity, as defined by:

fLS(H,Hmodel) =
R∑

i=1

T∑
j=1

|Hmodel( i, j)−H( i, j) |2

= ‖Hmodel( i, j)−H( i, j) ‖ 2
F (5.4)

fcap(H,Hmodel) = C(H)− C(Hmodel) . (5.5)

Where information capacity is the primary measure used in this research, the fcap

metric would seem to be the best measure of how well the ray-parameter feedback

represents the information necessary to approximate the transmitted signal covari-

ance for optimal capacity. However, this requires that the capacity calculations be

performed for every value of Nrays, rather than once at the end of the Nrays itera-

tion to calculate the capacity achieved by the parameters as selected by some other

metric. For this reason, the fLS metric was preferred for the bulk of the simulations

presented. In cases where the transmitter was assumed to have knowledge of the

channel state information (CSI), H in Equation 5.4 represented the known channel

matrix. In cases where a training-based channel estimation process was simulated, H

was replaced with Ĥ estimated from the known training symbol sequence. To provide

a penalty for increasing the order of the model, the metric value of Hmodel generated

with a larger number of rays was required to be less than 90% of the metric value of

Hmodel produced with fewer rays. Otherwise, the parameter set with fewer rays was

selected. By this process, a higher order model of the channel matrix must provide

significant improvement in the metric to justify the increased amount of feedback

information required.

Estimate Ray 
Model Parameters

Synthesize
Ray-Based Hmodel

Calculate Metric 
Comparison between

H and Hmodel

Choose 
Nrays ≤ min{T,R}

Figure 5.1: Metric calculation for model parameters as a function of Nrays
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Once a value of Nrays is selected, the ray model parameters are estimated in

a four step process:

• estimate angles of departure from transmitter, φi,

• estimate angles of arrival at receiver, θi,

• determine the pairwise correspondence between φi and θi,

• estimate the complex ray gains, βi.

In this research, we investigate several methods of Direction of Arrival estima-

tion. First, the MIMO beamscan method is a 2-dimensional application of conven-

tional beam steering. Second, we tested two 1-dimensional subspace-based Direction

of Arrival estimation methods: MUSIC and 1-D ESPRIT. These methods estimate

transmit ray angles and receive ray angles separately which makes it necessary to de-

termine the pairwise correspondence of transmit rays to receive rays in a subsequent

step. Our pairwise matching technique is based on [65]. Finally, we also present an

alternative 2-dimensional subspace Direction of Arrival estimator, 2-D Unitary ES-

PRIT, that estimates paired transmit and receive ray angles jointly for a Uniform

Linear Array (ULA) configuration.

5.2.1 MIMO Beamscan

Our MIMO beamscan algorithm projects the channel transfer matrix, Ĥ , onto

conventional beam steering vectors for transmit and receive arrays while sweeping

the beams through the range of directions on both arrays. The ray angle estimator

searches for peaks in the magnitude of the 2-D beamformer output:

P̂bf(φ, θ) = | axmit (φ)H Ĥ a rcv (θ) | , (5.6)

where axmit(φ) ∈ �T×1 and a rcv(θ) ∈ �R×1 are the steering vectors for the transmit

and receive arrays as used in the ray synthesis of the channel matrix in Equation

5.1. The operator | · | indicates here the magnitude of a complex scalar. If the

61



www.manaraa.com

values of both φ and θ are drawn from a discrete set of values, {ψ1, ψ2 . . . , ψk}, which

samples the angular space in an appropriate way, we can express the beamformer

output in terms of the matrices Axmit = [ axmit (φ1) · · · axmit (φk) ] and Arcv =

[ a rcv (θ1) · · · a rcv (θk) ] as

P̂bf = |AH
xmit Ĥ Arcv | , (5.7)

where P̂bf is a k × k matrix and | · | represents the complex magnitude of each entry.

The locations of local maxima within P̂bf are mapped back to angles using the ordered

set of {ψ1, ψ2 . . . , ψk}. For example, if P̂bf (i, j) is a local maximum, we conclude that

there is a MIMO ray pair with φ = ψi and θ = ψj .

5.2.2 MUSIC

The MUSIC (Multiple Signal Classification) algorithm was invented by Schmidt

[66] and independently by Bienvenu and Kopp [67], as noted by VanTrees in [68]. Our

presentation here draws significantly from the latter reference.

The MUSIC algorithm for signal direction estimation assumes that there are

D plane waves incident on the sensor array at angles θ1, . . . , θD and that D is less

than the number of sensors, N . The covariance of the received signal is defined in

terms of the array geometry and the covariance of the transmitted signals as

Rx = A(θ)RsA(θ)H + σ2
nI , (5.8)

where A(θ) = [ a(θ1) a(θ2) · · · a(θD) ] is composed of D steering vectors for the

array, Rs is the covariance of the transmitted signals, and σ2
n is the uncorrelated

noise power. Rx is often referred to as the spectral matrix of the received signals. The

columns of A(θ) span a D dimensional signal subspace that contains all of the signal

energy. Under the assumption that Rs is full rank, the algorithm separates Rx into

the D dimensional signal subspace and a (N −D) dimensional noise subspace using

eigendecomposition. In terms of its eigenvalues, λi, and eigenvectors, ui, Rx can be
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expressed as

Rx =

N∑
i=1

λi ui u
H
i or Rx = U ΛUH , (5.9)

where U = [u1 u2 · · · uN ] and Λ = diag{[λ1 λ2 · · · λN ]}. For convenience, it is

assumed that the λi’s are arranged in decreasing magnitude so that

λi ≥ λ2 ≥ · · · ≥ λD > λD+1 = ... = λN = σ2
n .

This allows us to define the bases for the signal and noise subspaces in terms of

partitions of U :

US = [u1 u2 · · · uD ] and UN = [uD+1 uD+2 · · · uN ] . (5.10)

As a result of the composition of the signal subspace, all of the basis vectors in US

can be formed by a unique linear combination of the steering vectors in A(θ), as in

ui = [ a(θ1) a(θ2) · · · a(θD) ]

⎡
⎢⎢⎢⎢⎢⎢⎣

ci,1

ci,2
...

ci,D

⎤
⎥⎥⎥⎥⎥⎥⎦ = A(θ) ci i = 1, 2, . . . , D . (5.11)

This allows us to express US as a full-rank transformation of A(θ),

US = A(θ) [ c1 c2 · · · cD ] = A(θ) C . (5.12)

Because the signal subspace is orthogonal to the noise subspace, any vector in the

signal subspace will have zero projection onto any vector in the noise subspace. This

provides the essential result for most subspace-based processing: that the steering

vectors projected onto the noise subspace have zero norm:

‖ a(θi)
H UN ‖ 2 = a(θi)

HUN U
H
N a(θi) = 0 i = 1, 2, . . . , D . (5.13)

In situations where the received signal covariance, Rx, is not known, we rely

on an estimate R̂x, and use its eigendecomposition, R̂x = Û Λ̂ ÛH , to estimate the

signal and noise subspaces:

ÛS = [ û1 û2 · · · ûD ] and ÛN = [ ûD+1 ûD+2 · · · ûN ] . (5.14)
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Frequently, a quantity called the MUSIC spectrum is defined as a function of θ in

terms of the squared norm of a beamsteering vector projected onto all of the basis

vectors of the noise subspace, ÛN :

P (θ) =
1

N∑
i=D+1

‖ a(θ)H ûi ‖ 2

=
1

a(θi)
HÛN Û

H
N a(θi)

. (5.15)

In the absence of estimation error, P (θ) is infinite when θ = θi (i = 1, 2, . . . , D)

because the a(θi)’s lie in the signal subspace, not the noise subspace. In practice, the

θi’s are determined by the D largest peaks in P (θ). One significant downside of the

MUSIC algorithm is the computational burden of evaluating P (θ) at many sampling

values of θ.

The algorithm described so far is often referred to as spectral MUSIC and is

applicable to any array configuration. Other MUSIC algorithms have extended this

general case by using specific structure of the arrays. For example, root MUSIC can

be applied to a Uniform Linear Array and expresses the projection onto the noise

subspace as a polynomial in the complex z-plane. Angles are identified by finding the

roots of the polynomial and choosing the D roots inside the unit circle and closest

to the unit circle. Root MUSIC is able to remove the effect of estimation error that

produces displacement of the roots in the radial direction because it determines the

θi’s using only the angular component of the D root locations. Common extensions

to root music include (1) forward-backward root MUSIC which improves the estimate

of the spectral matrix by exploiting conjugate centro-symmetry to average out part

of the estimation errors and (2) unitary root MUSIC which performs transformations

on the spectral matrix to represent it with purely real entries to achieve the same

performance as forward-backward root music with significant computational savings

[68].

In this research, the received signal covariance estimate, R̂x, is formed from

the channel transfer matrix, H , or its estimate Ĥ and using the assumption that the

transmitted signals are uncorrelated. To estimate the angles of arrival at the receiver,
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we use the covariance R̂rcv = HHH which leads to signal and noise subspaces derived

from the left singular vectors of H . Similarly, to estimate the angles of departure

from the transmitter, we use the reciprocal channel, HH to compose the covariance

R̂xmit = HHH which leads to subspaces composed of the right singular vectors of

H . Table 5.2.2 shows the MUSIC algorithm quantities in terms of the singular value

decomposition of H = UΣV H . Note that the value of D is equal to our choice of

Nrays as described in Section 5.2.

Table 5.2.2 - Comparison of MUSIC algorithm quantities used in
receive angle and transmit angle estimation

Algorithm Quantity Receive Angle Estimation Transmit Angle Estimation

Channel Matrix H = UΣV H HH = V ΣUH

Rx HHH = UΣ 2UH HHH = V Σ 2V H

Signal Subspace [u1 u2 · · · uD ] [v1 v2 · · · vD ]

Noise Subspace [uD+1 uD+2 · · · uN ] [vD+1 vD+2 · · · vN ]

P (θ)
1

arcv(θi)
HUN U

H
N arcv(θi)

1

axmit(θi)
HVN V

H
N axmit(θi)

By selecting the D = Nrays peaks of Prcv(θ) and Pxmit(θ) evaluated at a rea-

sonably sampled set of θ ∈ [−90, 90 ], we have estimated the set of values for receive

and transmit angles, but these sets do not have any ray angle pairing information

or complex gains associated with them. At this point in the estimation process,

we would proceed with the Transmit-Receive Ray Pairing processing as described in

Section 5.2.4.
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5.2.3 1-D ESPRIT

The ESPRIT (Estimation of Signal Parameters via Rotational Invariance

Techniques) algorithm was derived by Roy in his doctoral dissertation [69] and sev-

eral other publications as noted by VanTrees in [68] and Swindlehurst in [70]. Both of

the latter references outline the derivation and present a step-by-step process for esti-

mating angles of arrival for plane waves on a sensor array. The following development

incorporates significant portions of material from these references.

ESPRIT is applicable for arrays which can be decomposed into two (or more)

identical subarrays which are displaced from each other by a constant translation

vector, ∆. It is permissible for array elements to be members of both subarrays when

the subarrays are overlapping. For an array with N total sensor elements and m

members in each subarray, we can conclude that N ≤ 2m with equality representing

cases with non-overlapping subarrays. The algorithm depends on the assumption of

D plane waves incident on the sensor array at angles θ1, . . . , θD and that D is less

than the number of sensors in each subarray, m.

Starting with the narrowband array model from section 2.1, the output of the

array can be modeled in terms of the array manifold matrix composed of D steering

vectors for the array, A(θ) = [ a(θ1) a(θ2) · · · a(θD) ], as

x = A(θ) s + n . (5.16)

This results in the same expression for the received signal covariance used in equation

5.8 in the previous section:

Rx = A(θ)RsA(θ)H + σ2
nI , (5.17)

where Rs is the covariance of the transmitted signals and σ2
n is the uncorrelated noise

power. The columns of A(θ) span a D dimensional signal subspace that contains

all of the signal energy. The algorithm separates Rx into the D dimensional signal

subspace and a (N −D) dimensional noise subspace using an eigendecomposition. In
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terms of its eigenvalues, λi, and eigenvectors, ui, Rx can be expressed as

Rx =
N∑

i=1

λi ui u
H
i or Rx = U ΛUH , (5.18)

where U = [u1 u2 · · · uN ] and Λ = diag{[λ1 λ2 · · · λN ]}. For convenience, it is

assumed that the λi’s are arranged in decreasing magnitude so that

λi ≥ λ2 ≥ · · · ≥ λD > λD+1 = ... = λN = σ2
n .

This allows us to define the bases for the signal and noise subspaces in terms of

partitions of U :

US = [u1 u2 · · · uD ] and UN = [uD+1 uD+2 · · · uN ] . (5.19)

The subarrays are mathematically identified by use of selection matrices, J1

and J2, operating on the array manifold matrix for the total array as in

A1 = J1A(θ) and A2 = J2A(θ) . (5.20)

Some examples of subarrays selected from a uniform linear array are shown on page

1172 of [68] with their associated selection matrices, J . The ESPRIT algorithm

exploits the shift invariance property inherent in this special array structure:

A2 = A1 Φ . (5.21)

The matrix Φ is a unitary diagonal matrix defined in terms of the angles of arrival by

Φ = diag{[φ1 φ2 · · · φD ]} , (5.22)

where

φi = exp{−j 2π∆ sin θi/λ} i = 1, . . . , D (5.23)

uses the wavelength of the narrowband signal, λ, and the subarray separation dis-

tance, ∆ = |∆|. Because of the shift structure inherent in A(θ), ESPRIT is able to

estimate Φ, and consequently the angles of arrival θ1, . . . , θD, without knowledge of

the reference array manifold matrix, A1.
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Assuming that the source covariance matrix, Rs, is full rank, the D signal

subspace eigenvectors US span the same subspace as the columns of A(θ), which

implies that

US = A(θ)T (5.24)

for some full-rank matrix T ∈ �D×D. In other words, the signal subspace eigenvectors

are linear combinations of the array manifold vectors of the D sources.

Selecting the subarray signal subspaces using J1 and J2 and substituting from

equation 5.24 gives

US1 = J1 US = J1A(θ)T = A1 T (5.25)

and

US2 = J2 US = J2A(θ)T = A2 T . (5.26)

The goal is to express US2 in terms US1 to allow direct exploitation of the shift

invariance relation between the two subarray signal subspaces. This can be done by

solving equation 5.25 for A1 which yields

A1 = US1 T
−1 , (5.27)

and substituting into the shift invariance relation in equation 5.21 to obtain the

following expression for A2 :

A2 = A1 Φ = US1 T
−1 Φ . (5.28)

Using this last expression as a substitution for A2 in equation 5.26, leads to a mapping

which relates the subspace spanned by US2 to the subspace spanned by US1 given by

US2 = A2 T = A1 ΦT = US1 (T−1 ΦT ) = US1Ψ , (5.29)

where linear operator Ψ = T−1 ΦT has been defined. This equation expresses the

same invariance relationship as A2 = A1 Φ now in terms of the signal subspace eigen-

vectors. We can conclude from this that US1 and US2 span an identical subspace and

that the matrix Ψ has eigenvalues identical to the entries of Φ which uniquely specify

the angles of arrival if m > D and ∆ < λ/2.
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In practice, the sample covariance R̂x must be used in place of Rx, which results

in estimates for the subarray signal subspace eigenvectors, ÛS1 and ÛS2, which will

not exactly satisfy the shift invariance relationship in equation 5.29. Consequently,

there is no matrix Ψ that can exactly map the columns of ÛS1 onto the columns of

ÛS2. The best we can do at this point is to find Ψ̂ which minimizes the difference

between ÛS2 and ÛS1 Ψ̂ in some least-squares sense.

If we solve equation 5.29 using ordinary least-squares, we seek to minimize the

Frobenius norm distance between ÛS2 and ÛS1 Ψ̂ as in

Ψ̂LS = arg min
Ψ

{
‖ ÛS2 − ÛS1 Ψ ‖2F

}
= arg min

Ψ

{
tr
{

[ ÛS2 − ÛS1 Ψ ]H [ ÛS2 − ÛS1 Ψ ]
}}

. (5.30)

This leads to the pseudoinverse solution of

Ψ̂LS = Û †
S1 ÛS2 = [Û H

S1 ÛS1]
−1 Û H

S1 ÛS2 . (5.31)

The steps in the LS-ESPRIT algorithm can be summarized as follows:

1. Perform the eigendecomposition of R̂x to obtain ÛS,

2. Find ÛS1 = J1 ÛS and ÛS2 = J2 ÛS,

3. Find Ψ̂LS = Û †
S1 ÛS2,

4. Find the eigenvalues of Ψ̂LS: λ̂1, λ̂2, . . . , λ̂D,

5. Use equation 5.23 to find the angle estimates, θ̂i = arcsin
{
arg{λi} λ

2π ∆

}
.

As an alternative to the ordinary LS solution for Ψ̂, a total least squares (TLS)

criterion may be used. This is probably more appropriate given that the estimates

of both ÛS1 and ÛS2 contain errors, whereas the LS solution assumes that ÛS2 is

error-free. The TLS solution is described in Section 12.3 of [71] and Section 7.7 of

[72]. VanTrees states that LS-ESPRIT and TLS-ESPRIT have the same asymptotic

variance as the data available to estimate R̂x goes to infinity, but that TLS-ESPRIT

generally has better threshold behavior [68]. Our presentation follows that of [70].
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The TLS solution for Ψ̂ may be stated as follows:

Given the subspace estimates ÛS1 and ÛS2, find a D × D matrix Ψ̂ and

m×D matrices X and Y to minimize

‖X‖2F + ‖Y ‖2F

subject to

( ÛS1 +X ) Ψ̂ = ÛS2 + Y .

As shown in the references above, the TLS solution to this minimization is obtained

from

Ψ̂TLS = −V12 V
−1

22 , (5.32)

where

V =

⎡
⎣ V11 V12

V21 V22

⎤
⎦ (5.33)

is the matrix of right singular vectors taken from the singular value decomposition of

Ū
�
=

[
ÛS1

... ÛS2

]
= U ΣV H , (5.34)

or from the eigendecomposition of

ŪH Ū =

⎡
⎣ V11 V12

V21 V22

⎤
⎦ Λ

⎡
⎣ V11 V12

V21 V22

⎤
⎦H

. (5.35)

The steps of the TLS-ESPRIT algorithm can be summarized:

1. Perform the eigendecomposition of R̂x to obtain ÛS,

2. Find ÛS1 = J1 ÛS and ÛS2 = J2 ÛS,

3. Compute the eigendecomposition of ŪH Ū and set [V T
12 V T

22 ]T equal to the

eigenvectors associated with the D smallest eigenvalues,

4. Find Ψ̂TLS = −V12 V
−1

22 ,

70



www.manaraa.com

5. Find the eigenvalues of Ψ̂TLS, λ̂1, λ̂2, . . . , λ̂D,

6. Use equation 5.23 to find the angle estimates, θ̂i = arcsin
{
arg{λi} λ

2π ∆

}
.

In addition to the LS-ESPRIT and TLS-ESPRIT algorithms presented here,

there are several other versions of ESPRIT similar to those mentioned earlier for

MUSIC. Forward-Backward or FB-ESPRIT can be used in the special case of ar-

rays with conjugate centro-symmetry to average out part of the estimation errors.

Unitary ESPRIT performs the FB averaging with particular unitary transformations

allowing the eigendecomposition calculations to be performed on purely real matrices.

This realizes performance equivalent to FB-ESPRIT but with significant computation

savings.

In this research, the received signal covariance estimate, R̂x, is formed from

the channel transfer matrix, H , or its estimate Ĥ and using the assumption that the

transmitted signals are uncorrelated. To estimate the angles of arrival at the receiver,

we use the covariance R̂rcv = HHH which leads to signal and noise subspaces derived

from the left singular vectors of H . Similarly, to estimate the angles of departure

from the transmitter, we use the reciprocal channel, HH to compose the covariance

R̂xmit = HHH which leads to subspaces composed of the right singular vectors of H .

LS-ESPRIT is used for simplicity. We have performed simulations with maximally

overlapping subarrays spaced by λ/4 as shown in Figure 5.2 and with 8 element

maximally overlapping subarrays spaced by λ/2. In the second case the subarray

separation distance is 2∆ by comparison to the figure. When the subarray spacing

is less than λ/2 it becomes possible for the argument of the sin−1(·) function to have

magnitude greater than one. This results in imaginary values for angles, which is

not physically interpretable. In these cases, these estimates were simply discarded

and the processing proceeded with the remaining real estimates. Table 5.2.3 shows

the ESPRIT algorithm quantities in terms of the singular value decomposition of

H = UΣV H . Note that the value of D is equal to our choice of Nrays as described in

Section 5.2.
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11 22 33 44 55 66 77 88 99 1010

∆∆ Subarray 2

Subarray 1

Figure 5.2: Maximally overlapping 9-element subarrays for 10-element ULA

Table 5.2.3 - Comparison of 1-D ESPRIT algorithm quantities used in
receive Angle and transmit angle estimation

Algorithm Quantity Receive Angle Estimation Transmit Angle Estimation

Channel Matrix H = UΣV H HH = V ΣUH

Rx HHH = UΣ 2UH HHH = V Σ 2V H

Signal Subspace [u1 u2 · · · uD ] [v1 v2 · · · vD ]

J1 Selection Matrix [ I 9×9
... 0 9×1 ] [ I 9×9

... 0 9×1 ]

J2 Selection Matrix [ 0 9×1
... I 9×9 ] [ 0 9×1

... I 9×9 ]

5.2.4 Transmit-Receive Ray Pairing and Ray Gain Estimation

Once we have estimates of the sets of transmit angles, φi, and receive angles θi,

we need to establish the pair-wise correspondence between the two sets and estimate

the complex gain factors that best approximate the channel transfer matrix, H , as a

weighted sum of outer products as described in the ray synthesis channel model in

Equation 5.2. We use the ad hoc successive removal method proposed by Jeffs and

Wallace in [65] and follow closely the development outlined there. For compactness
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of notation, we will adopt the following notation used by Jeffs and Wallace:

Q = [q 1 q 2 · · · qN ] = Arcv (5.36)

W = [w1 w2 · · · wN ] = Axmit .

We note from their description that the pairwise angle correspondence problem

between φi and θj is non-trivial because a ray-based channel with K = Nrays rays has

K! distinct possible pairings of i and j. Continuing the assumption that the additive

noise in the channel is i.i.d. Gaussian distributed, the maximum likelihood estimate

for complex gain parameters and pairing information is

[B̂, P̂ ] = arg min
B,P
‖H − Q̂ P B ŴH ‖2F , (5.37)

where the ray gain matrix, B, is constrained to be diagonal and the pairing matrix,

P , is a permutation with each row and column containing at most one “1”. The

locations of the ’1’ terms in P associates columns of Q̂ dependent on θj with columns

of Ŵ derived from φi. The beam steering matrices, Q̂ = Â rcv and Ŵ = Âxmit

are formed as in Equation 5.3 using the angle estimates determined previously but

without knowledge of correct column ordering. The fact that Equation 5.37 is not

convex in P requires an exhaustive search over all K! possible pairing configurations

for P . As an alternative, this ad hoc pairing algorithm reduces the candidate search

space by limiting the number of departure - arrival angle pairings.

The development begins by pointing out that the least squares solution to

Equation 5.37 without constraining B to be diagonal is

B̂ = Q̂†H (ŴH)† , (5.38)

where ( )† indicates matrix pseudo-inverse. Note that B̂ ≈ P B where the approxi-

mation is due only to estimation errors in φi and θrcv,j and array calibration errors.

Without considering these errors, B̂ will have non-zero entries only at locations cor-

responding to the ’1’s in the pairing matrix, P , and can serve to identify P and the

pair matching information it should contain. If P is known and B is constrained to be
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diagonal, then the solution to Equation 5.37 can be expressed in the following closed

form:

b = A† h (5.39)

h = vec{H}
A = W ∗ ⊗QP

= [w∗
1 ⊗Qp1 w∗

1 ⊗Qp2 · · · w∗
1 ⊗QpK w∗

2 ⊗Qp1

w∗
2 ⊗Qp2 · · · w∗

K ⊗QpK ] ,

where ⊗ is the Kronecker matrix product and vec{·} is the columnwise matrix vec-

torization operator.

The derivation of the relationships in Equation 5.39 starts from the well known

vectorization property of the quadratic matrix product, which is that the vectorized

product of three general complex matrices can be expressed as

vec{AY B} = (BH ⊗ A ) vec{Y } , (5.40)

where the matrices A, Y , and B have dimensions appropriate for multiplication. A

proof of this relationship for the real-matrix case and examples demonstrating its

utility in solving matrix equations of the form AY B = C for Y can be found in [72].

After expressing the Maximum-Likelihood criterion in Equation 5.37 as the following

approximation,

H ∼= Q̂ P B ŴH , (5.41)

we vectorize it and use the relationship in Equation 5.40. The matrix product Q̂ P

represents the receive steering vectors reordered from their original arbitrary sequence

to correspond pairwise to the transmit steering vectors ordered in Ŵ . It is treated as

a single quantity to produce

h = vec{H} ∼= vec

{
Q̂ P︸︷︷︸ B ŴH

}
(5.42)

∼=
(
Ŵ ∗ ⊗ Q̂ P︸︷︷︸

)
vec{B} .
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The least squares solution for b = vec{B} is b = A† h where A results from the

expansion of ( Ŵ ∗⊗ Q̂ P ). At this point, the definitions of h, b, and A match those

shown in the form of the solution for the complex ray gains shown in Equation 5.39.

We can gain insight into the structure of A by observing that Q̂pi represents the

receive steering vector that has been reordered to correspond in the ray synthesis

model with βi and the transmit steering vector at φi.

The pairing algorithm exploits these relationships and uses a short interaction

to solve Equation 5.37 in the presence of error in B̂, as outlined in the following steps.

1. Compute unstructured B̂ as in Equation 5.38.

2. Define T as a threshold value such that 2K elements, b̂i,j , of B̂ have magnitudes

greater than T . Extract placement of ’1’s in P̂ by letting

P̂ = {p̂i,j},where p̂ i,j =

⎧⎪⎨
⎪⎩

1 | b̂i,j | ≥ T

0 otherwise .

(5.43)

In other words, non-zero entries in P̂ correspond to the 2K largest elements of

B̂. These are candidate ray angle pairs.

3. Repeat the following steps K times.

(a) Find the ray departure-arrival angle pair that contributes least to reducing

error in the forward modeled H . Using Equation 5.39 to solve for B for

each (i, j) pair in the minimization, find

(i ′, j ′) = arg min
(i,j)∈S,B

‖H − Q̂ P B ŴH ‖2F , (5.44)

where S = {∀ (i, j) | p i,j = 1}.

(b) Remove this pair from P̂ , i.e. p i ′,j ′ = 0.

4. The final P contains the K correct ray angle pairings, and is used in Equation

5.39 for the final estimate of b.
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5.2.5 2-D Unitary ESPRIT for MIMO ULA’s

The version of 2-D unitary ESPRIT described here is an adaptation of the

algorithm described by Zoltowski et al. for simultaneous, closed form 2-D angle

estimation with uniform rectangular arrays [73] applied to a MIMO system with

Uniform Linear Arrays. It is presented as an alternative 2-dimensional subspace

Direction of Arrival estimator that gives pairing information along with transmit

and receive angles. Unitary versions of subspace based estimators allow performance

comparable to forward-backward-averaged methods along with a computation savings

realized from replacing complex-valued computations with real-valued ones and the

option of substituting simple addition for many multiplication operations. Because

the ray synthesis form of the MIMO channel model is composed of a weighted sum

of outer products of array manifold vectors, the narrowband channel transfer matrix,

H , is similar to the angular dependent response of a uniform rectangular array used

as a receiver. This presentation assumes the ULA structure on both the transmit and

receive sides of the MIMO system for consistency with the material in the reference.

However, the authors state in their conclusions that the algorithm may be easily

adapted for other array configurations with a dual invariance structure such as a

cross array. Our presentation here will approximately follow the development and

notation of [73].

The mathematical definition of conjugate centrosymmetry of a vector aN ∈
�N×1 can be stated as ΠN aN = a∗

N , where

ΠN =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

···

1

1

⎤
⎥⎥⎥⎥⎥⎥⎦ ∈ �

N×N . (5.45)

Using the observation that the inner product between any two conjugate cento-

symmetric vectors is real-valued, any matrix whose rows are each conjugate cen-

trosymmetric will transform the complex-valued element space array manifold into a
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real-valued manifold. The unitary FB averaging matrix, Q, transforms the complex-

valued element space manifold into a real-valued manifold without loss of information

and is typically defined as

Q2K =
1√
2

⎡
⎣ IK j IK

ΠK −j ΠK

⎤
⎦ (5.46)

for even numbers of array elements, or

Q2K+1 =
1√
2

⎡
⎢⎢⎢⎣
IK 0 j IK

0T
√

2 0T

ΠK 0 −j ΠK

⎤
⎥⎥⎥⎦ (5.47)

for odd numbers of array elements. We introduce the shorthand angle notation of

µi =
2π

λ
∆xmit sin (φi ) and νi =

2π

λ
∆rcv sin ( θi ) , (5.48)

where ∆xmit, ∆rcv and λ are respectively the element spacing for the transmitter array,

the element spacing for the receiver array and the system operating wavelength. The

transformed real-valued array manifold vectors are formed by

dxmit(µi) = QH
M axmit(µi) and drcv(νi) = QH

N arcv(νi) . (5.49)

Beginning with the ray-synthesis form of the channel transfer matrix from

Equations 5.2 and 5.3, we can write

H = Axmit BA
H
rcv (5.50)

= [ axmit(µ1) · · · axmit(µD) ] diag{[ β1 · · · βD ]} [ a rcv(ν1) · · · a rcv(νD) ]H .

Applying the unitary averaging transform to both sides of H yields

H̃ = QH
M H QN = QH

M Axmit BA
H
rcv QN . (5.51)

We can notice that the columns of QH
M Axmit are the dxmit(µi) vectors, and that the

rows of AH
rcv QN are the dH

rcv(νi) vectors for i = 1, . . . , D. This allows us to rewrite

the expression of H̃ as

H̃ = QH
M H QN = Dxmit(µ)BD T

rcv(ν) , (5.52)
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where the transformed array manifold matrices are

Dxmit(µ) = QH
M Axmit = [dxmit(µ1) · · · dxmit(µD) ] (5.53)

and

Drcv(ν) = QH
N Arcv = [drcv(ν1) · · · drcv(νD) ] . (5.54)

Taking the real-valued singular value decomposition of H̃ gives information about the

rank D left and right signal subspaces, US and VS :

H̃ = U ΣV T = [ US UN ]

⎡
⎣ ΣS

ΣN

⎤
⎦ [ VS VN ]T . (5.55)

From this and Equation 5.52, we can conclude that the columns of Dxmit(µ) span the

same subspace as the columns of US and that the columns of Drcv(ν) span the same

subspace as the columns of VS. This can be expressed as

US = Dxmit(µ)Tµ and VS = Drcv(ν)Tν , (5.56)

where the full-rank transformations Tµ and Tν have dimension D ×D. Additionally,

we can see from

H̃ = US ΣS V
H
S = Dxmit(µ) Tµ ΣS T

T
ν︸ ︷︷ ︸

B

D T
rcv(ν) = Dxmit(µ)BD T

rcv(ν) (5.57)

that the two-sided transform

Tµ ΣS T
T

ν = B (5.58)

maps the singular values in ΣS onto the ray gain factors in B.

Using results for 1-D unitary ESPRIT derived explicitly in [73], we can state

the invariance relationships inherent in the ESPRIT subarray structure identified by

the subarray selection matrices J1 and J2 as

K1Dxmit(µ) Φµ = K2Dxmit(µ) (5.59)

K3Drcv(ν) Φν = K3Drcv(ν) , (5.60)
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where the following matrices have been defined:

K1 = Re
{
QH

M−1 J2QM

}
and K2 = Im {QH

M−1 J2QM

}
(5.61)

K3 = Re
{
QH

N−1 J2QN

}
and K4 = Im {QH

N−1 J2QN

}
(5.62)

Φµ =

⎡
⎢⎢⎢⎣

tan
(

µ1

2

)
. . .

tan
(

µD

2

)
⎤
⎥⎥⎥⎦ (5.63)

Φν =

⎡
⎢⎢⎢⎣

tan
(

ν1

2

)
. . .

tan
(

νD

2

)
⎤
⎥⎥⎥⎦ . (5.64)

If we use Equation 5.59 and the substitution US = Dxmit(µ)Tµ from Equation 5.56,

we can expand the following expression for K2 US

K2 US = K2Dxmit(µ)Tµ = K1Dxmit(µ) Φµ Tµ

= K1Dxmit(µ) Tµ T
−1
µ︸ ︷︷ ︸

I

Φµ Tµ

= K1 Dxmit(µ)Tµ︸ ︷︷ ︸
US

T−1
µ Φµ Tµ︸ ︷︷ ︸

Ψµ

= K1 US Ψµ . (5.65)

In an analogous fashion, K4 VS becomes

K4 VS = K4Drcv(ν)Tν = K3Drcv(ν) Φν Tν

= K3Drcv(ν) Tν T
−1
ν︸ ︷︷ ︸

I

Φν Tν

= K3 Drcv(ν)Tν︸ ︷︷ ︸
VS

T−1
ν Φν Tν︸ ︷︷ ︸

Ψν

= K3 VS Ψν . (5.66)

It is significant to notice that Ψµ = T−1
µ Φµ Tµ and Ψν = T−1

ν Φν Tν are similarity

transforms. This guarantees that the eigenvalues of Ψµ and Ψν are identical to those

of Φµ and Φν which are directly dependent on the transmit and receive angles as

represented by the µi’s and νi’s. We can isolate the Ψµ and Ψν matrices by using
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the following expressions which result from solving Equations 5.65 and 5.66 in a

least-squares sense to obtain

Ψµ = (K1 US )†K2 US (5.67)

and

Ψν = (K3 VS )†K4 VS . (5.68)

The remaining goal is to find an expression which pairs the eigenvalues of the

two real-valued matrices Φµ and Φν so that the association between µi and νj can be

established. To accomplish this, we need a substitution for Tµ in terms of Tν . This

can be found by solving Equation 5.58, Tµ ΣS T
T

ν = B, for Tµ as expressed in two

useful forms as

Tµ = B T−T
ν Σ−1

S

T−1
µ = ΣS T

T
ν B−1 . (5.69)

Our starting point is to substitute Ψµ = T−1
µ Φµ Tµ and Ψν = T−1

ν Φν Tν into the

complex-valued expression Ψµ + jΨT
ν and proceed by using the expressions in 5.69:

Ψµ + jΨT
ν = T−1

µ Φµ Tµ + j T T
ν Φν T

−T
ν

= ΣS T
T
ν B−1 Φµ B︸ ︷︷ ︸ T−T

ν Σ−1
S + j T T

ν Φν T
−T
ν

= ΣS T
T
ν Φµ T

−T
ν Σ−1

S + j T T
ν Φν T

−T
ν . (5.70)

Notice that the grouped quantity B−1 Φµ B consists of all diagonal matrices, so the

product can be taken in any convenient order, such as

B−1 Φµ B = (BB−1 ) Φµ = I Φµ = Φµ . (5.71)

Equation 5.70 can be converted into a complex-valued similarity transform with only

a slight modification:

Σ−1
S Ψµ ΣS + jΨT

ν = T T
ν Φµ T

−T
ν + j T T

ν Φν T
−T
ν

= T T
ν (Φµ + j Φν ) T−T

ν . (5.72)
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This is convenient because ΣS can be obtained from the SVD of H̃ . The eigenvalues

of Σ−1
S Ψµ ΣS + jΨT

ν , denoted λ1, . . . , λD, will be the appropriately paired entries of

Φµ + j Φν such that

µi = 2 tan−1
(Re {λi}

)
and νi = 2 tan−1

( Im {λi}
)
. (5.73)

Once the µi’s and νi’s are known, they can be translated into φi and θrcvi
by solving

Equation 5.48 :

φi = sin−1

(
µi λ

2π∆xmit

)
and θi = sin−1

(
νi λ

2π∆rcv

)
. (5.74)

At this point, the transmit and receive angle pairs have been estimated, and the gain

factors for each ray can be estimated using the vectorized least squares approach in

Equation 5.39.

The following steps summarize the 2-D ESPRIT estimation process:

1. Form the real-valued, smoothed H̃ = QH
M H QN ,

2. Calculate the SVD of H̃ = U ΣV T and form the D-dimensional signal subspace

model for H̃ = US ΣS V
H
S ,

3. Solve for Ψµ and Ψν using Equations 5.67 and 5.68 ,

4. Find the eigenvalues λ1, . . . , λD of the complex matrix Σ−1
S Ψµ ΣS + jΨT

ν ,

5. Solve for the µi’s and νi’s in terms of the λi’s using Equation 5.73 ,

6. Finally, solve for the φi’s and θi’s in terms of the µi’s and νi’s using Equation

5.74 .

5.3 Calculating Information Capacity of MIMO Channel with Feedback

In the standard Full-CSI waterfilling capacity solution described in Section

2.2, the covariance, Q, for the transmitted symbols is determined by finding the left
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dominant subspace of the channel matrix, H , using the SVD of H or the eigendecom-

position of HH H :

H = U ΣV H or HHH = UΛU H . (5.75)

The covariance, Q, is chosen so that the quantity Q̃ ≡ U HQU will be diagonal as

described in Equation 2.14. This indicates that Q should be formed from

Q = U Q̃U H , (5.76)

where the non-zero entries of Q̃ are obtained by the waterfilling equation:

Q̃ii = (µ − λ−1
i )+ . (5.77)

The λi’s are the eigenvalues of HH H which are equivalent to the squared singular

values of H , σ 2
i . The parameter µ is selected so that the maximum transmit power

constraint is satisfied:

tr (Q ) = tr
(
Q̃
)

=
∑

i

(µ − λ−1
i )+ ≤ ρ . (5.78)

In the CSI-Feedback case, we assume that the best approximation of H avail-

able to the transmitter is the Hmodel generated using the ray-synthesis equation with

the ray parameters passed from the receiver as in

Ĥ = Hmodel =

Nrays∑
i=1

axmit(φi) βi a rcv(θi)
H . (5.79)

This estimate is normalized to have average unit modulus elements to make it SNR

independent by using

Ĥ = Ĥ

√
M N∑M

i=1

∑N
j=1 |Ĥi,j|2

= Ĥ

√
M N

‖ Ĥ ‖2F
= Ĥ

√
M N

‖ Ĥ ‖F
. (5.80)

The estimate of U is formed from the left dominant subspace of Ĥ :

Ĥ = Û Σ̂ V̂ H or ĤHĤ = Û Λ̂ Û H . (5.81)
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Then, the estimate of Q is calculated by following Equation 5.76 to obtain

Q̂ = Û Q̃ Û H (5.82)

and estimating the non-zero entries of Q̃ using λ̂i = σ̂ 2
i in the waterfilling equation

under the standard maximum transmit power constraint in Equation 5.78:

Q̃ii = (µ − λ̂−1
i )+ . (5.83)

We can then insert Q̂ into the mutual information equation to obtain the channel

capacity for the CSI feedback case:

Cfeedback = log( det(IR +H QHH)) . (5.84)

The degree to which Cfeedback approaches the Full-CSI maximum capacity is deter-

mined by how well Q̃ = ÛHQ̂ Û is diagonalized and how closely the eigenvalues of Q̂

match the optimal eigenchannel weightings from the waterfilling solution.

5.4 Simulation Results

To investigate the performance of the ray model feedback algorithm, we sim-

ulated instances of MIMO ULA channels synthesized using the ray-synthesis model

with random parameters. The parameters and their random distributions are shown

in Table 5.1. A random variable x with Circular Complex Gaussian (CCG) distribu-

tion having mean m and variance σ2 = E{ (x−m)(x−m)∗ } can be generated using

the following convenient function of random variables a and b which are uniformly

distributed as a, b ∼ U [0, 1]:

x =
√
−σ2 ln(a) ej 2πb +m ∼ CN (m, σ2) . (5.85)

The random channel matrix is synthesized from the ray parameters using Equation

5.1:

H =

Nrays∑
i=1

axmit (φi) βi a rcv (θi)
H . (5.86)
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Table 5.1: Comparison of model parameter values using different cluster identification
strategies.

Model Parameter Notation Distribution

Transmit Angles φi Uniform ∼ U [−90 ◦, 90 ◦]

Receive Angles θi Uniform ∼ U [−90 ◦, 90 ◦]

Ray Gains βi CCG ∼ CN (m = 0 , σ2 = 1)

The axmit and a rcv were chosen for a 10-element ULA with λ/4 spacing to model

the MIMO Channel Sounding measurements used in Section 5.5. Then, to make the

channel realization SNR independent, it is scaled so the expected magnitude of each

entry is unity, E{ |Hi,h| } = 1 for i = 1, . . . ,M and j = 1, . . . , N , using

H = H

√
M N∑M

i=1

∑N
j=1 |Hi,j|2

= H

√
M N

‖H ‖2F
= H

√
M N

‖H ‖F . (5.87)

This allows the SNR of the system to be defined as

SNR (dB) = 10 log
PT

σ2
, (5.88)

where PT is the total power emitted from the transmit array and σ2 is the noise power

present in a single element receiver, σ2 = E{ni n
∗
i }. In these simulations, the noise

power, σ2 is always chosen to be 1.

In the case of Full CSI simulations, the unit modulus H is used directly in

estimating the model feedback parameters. When training-based estimation is used

at the simulated endpoints, an estimate of H is obtained by generating a sequence of

random training symbols received in noise using

X = H S +N . (5.89)

The elements of the transmitted symbol matrix, S ∈ �N×Nsymbols, are independent

and identically distributed (i.i.d.) as CN (0, σ2
S), and the elements of the noise matrix,
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N ∈ �M×Nsymbols, are i.i.d. using CN (0, σ2). Ĥ is obtained then from the least squares

solution:

Ĥ = X S† . (5.90)

In estimated channel cases, the model parameter estimation algorithms operate upon

Ĥ . The full-knowledge H is always used in the calculation of the maximum capacity

via the waterfilling solution (as if perfect CSI feedback were available) and the Fully

Blind Transmitter capacity (where no CSI feedback is given). These provide upper

and lower bounds for comparison of the feedback algorithms’ capacity performance.
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Figure 5.3: Mean capacity achieved ratio - fully blind transmitter with uniform power
eigenbeams

As shown in Figure 5.3, the Fully Blind Capacity of the MIMO channel in-

creases with the transmit power and the richness of the scattering environment (as

represented by the number of contributing ray paths). This suggests that for high
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SNR values and very rich scattering, the capacity improvement possible from exploit-

ing knowledge of the structure of H diminishes. In order to compare the capacity

improvement by using model parameter feedback with the “no feedback” case over

a range of SNR values and channel complexity, we decided to present the results in

terms of the following ratios:

Capacity Achieved Ratio =
Cfeedback

Cmaximum
(5.91)

and

Capacity Improvement Ratio =
Cfeedback − Cuniform

Cmaximum

. (5.92)

In these expressions, the maximum capacity using full knowledge of the channel

via the waterfilling solution is Cmaximum, and Cuniform represents the Fully Blind

Transmitter case where the power allocation is uniform over all eigenchannels (i.e.

Q = PT

N
IN). The Capacity Achieved Ratio is a measure of how well the model

parameter feedback approaches the Full CSI Transmitter case, and the Capacity Im-

provement Ratio indicates a comparison to the “no feedback” case to allow a decision

about the merit of the additional complexity the feedback requires.

5.4.1 Full CSI Receiver

Figure 5.4 shows the Capacity Achieved Ratios and Capacity Improvement

Ratios for Full CSI receivers using the four parameter estimation algorithms: MIMO

Beamscan, MUSIC, 1-D ESPRIT, and 2-D ESPRIT. For each algorithm, we selected

the number of trials in consideration of the simulation run times: Beamscan - 400

trials, MUSIC - 100 trials, 1-D ESPRIT - 100 trials, and 2-DESPRIT - 500 trials.

As expected, the MIMO Beamscan algorithm has the worst performance, although it

manages to achieve around 90% of the maximum capacity. It is interesting that the

achieved ratio curves reverse slope as the number of active eigenchannels increases.

MUSIC, 1-D ESPRIT, and 2-D ESPRIT all performed comparably well in this case,

with nominally 100% maximum capacity achieved through feedback for channel orders

smaller than the receive array size. As the channel order increases and the signal
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subspace dimension approaches the number of receive element, they all exhibit similar

degradation.
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Figure 5.4: Mean capacity achieved ratio - full CSI - algorithm comparison.
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Figure 5.5: Mean capacity improved ratio - full CSI - algorithm comparison.

5.4.2 Training-Based Receiver

Figures 5.6 through 5.9 show the Capacity Achieved Ratio and Capacity Im-

proved Ratio for the estimated channel case using MIMO Beamscan, MUSIC, 1-D

ESPRIT, and 2-D ESPRIT feedback. In each case, the Capacity Achieved Ratio plots

are in the left column, and the Capacity Improved Ratio plots are in the right column.

A significant performance penalty is imposed as the estimation algorithms deal with

an imperfectly estimated channel matrix, and the capacity ratios are much lower as a

result. In each case, the effect of the number of training symbols used is examined by

simulating with Nsymbols = 10, 15 and 20. This indicates an S matrix with dimension
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N×Nsymbols. In the Nsymbols = 10 case, the channel estimation problem is functioning

with the minimum amount of data to allow a solution.

For the minimum number of symbols, all of the estimators seemed to be limited

by errors in Ĥ when the SNR was low. They show dramatic improving trends as the

SNR is increased. In this operating mode, the capacity improvement over Cuniform

is fairly flat with SNR for all of the estimators, with the MIMO BEAM approach

yielding 5-10% improvement and the three subspace based techniques declining in

performance as the dimension of the signal subspace increases. The MUSIC algorithm

has some disconcerting performance at larger SNR values with higher complexity

channels where it actually performs worse than the Blind Transmitter case. The

best performance overall all comes from the 1-D ESPRIT with capacity achieved

ratios above 93% or better when using reasonable numbers of training symbols with

little dependence on SNR. 2-D ESPRIT avoids the iterative angle matching step with

approximately 10% lower capacity improvement ratios than 1-D ESPRIT.

Figure 5.10 is included to provide a comparison among the four feedback al-

gorithms. It shows the mean values for Capacity Achieved Ratio for all ray model

feedback algorithms with selected parameter settings. The number of training sym-

bols is fixed at 20, and the three plots show Nrays = {3, 9, 15}. Figures 5.11 and

5.12 show a comparison between random SVA clustered channels, iid zero-mean ran-

dom channels, and the random Ray Synthesis channels used in the remainder of the

simulations presented. The first figure shows mean Capacity Achieved Ratio at all

SNR values, and the second shows CCDF’s of the same data at SNR = {0, 6, 15 dB}.
For these comparisons, the 1-D ESPRIT algorithm was used to determine the feed-

back with training-based channel estimation with Nsymbols = 20. It is interesting to

note that the SVA channel performance is equivalent to Ray Synthesis channels with

about 9 rays at low SNR and with about 11 rays at higher SNR, and that the perfor-

mance under iid zero-mean random channels is significantly lower. This indicates the

capacity value of non-zero mean and correlation information in the channel matrix

when using ray model feedback and underscores the related discussion in [8]. In a
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related manner, the assumption of zero-mean, uncorrelated channel gains produces

much lower capacity as this reflects a condition where the long-term behavior of the

channel has been averaged to remove all non-zero mean information in the channel

gain terms and the number of multipath components is assumed large enough to re-

move all correlation. As the SNR increases, the ray model feedback is incapable of

representing enough eigenmodes to keep up with the waterfilling solution, and the

distribution becomes multi-modal as a function of the number of eigenchannels rep-

resented by the feedback model. This is reflected in the stair-step shape of the iid

CCDF curve. When the channel state information is does not provide non-zero mean

and non-white correlation information, ray model feedback is not a good choice for

realizing the full information capacity of MIMO channels.
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Figure 5.6: Mean capacity achieved ratio (left) and mean capacity improved ratio
(right) - training beamscan feedback (400 trials, Nsymbols = {10, 15, 20})

91



www.manaraa.com

0 5 10 15
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Transmit Power (dBWatts)

m
ea

n 
(c

ap
_d

f .
/ c

ap
_f

ul
l)

Mean Cap Achieved Ratio − MUSIC Feedback − Nsymbols = 10

3 Rays MUSIC
6 Rays MUSIC
9 Rays MUSIC
11 Rays MUSIC
15 Rays MUSIC

0 5 10 15
−0.1

0

0.1

0.2

0.3

0.4

0.5

Transmit Power (dBWatts)

m
ea

n 
(c

ap
_d

f −
 c

ap
_u

ni
f .

/ c
ap

_f
ul

l)

Mean Cap Improv’t Ratio − MUSIC Feedback − Nsymbols = 10

3 Rays MUSIC
6 Rays MUSIC
9 Rays MUSIC
11 Rays MUSIC
15 Rays MUSIC

0 5 10 15
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Transmit Power (dBWatts)

m
ea

n 
(c

ap
_d

f .
/ c

ap
_f

ul
l)

Mean Cap Achieved Ratio − MUSIC Feedback − Nsymbols = 15

3 Rays MUSIC
6 Rays MUSIC
9 Rays MUSIC
11 Rays MUSIC
15 Rays MUSIC

0 5 10 15
−0.1

0

0.1

0.2

0.3

0.4

0.5

Transmit Power (dBWatts)

m
ea

n 
(c

ap
_d

f −
 c

ap
_u

ni
f .

/ c
ap

_f
ul

l)

Mean Cap Improv’t Ratio − MUSIC Feedback − Nsymbols = 15

3 Rays MUSIC
6 Rays MUSIC
9 Rays MUSIC
11 Rays MUSIC
15 Rays MUSIC

0 5 10 15
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Transmit Power (dBWatts)

m
ea

n 
(c

ap
_d

f .
/ c

ap
_f

ul
l)

Mean Cap Achieved Ratio − MUSIC Feedback − Nsymbols = 20

3 Rays MUSIC
6 Rays MUSIC
9 Rays MUSIC
11 Rays MUSIC
15 Rays MUSIC

0 5 10 15
−0.1

0

0.1

0.2

0.3

0.4

0.5

Transmit Power (dBWatts)

m
ea

n 
(c

ap
_d

f −
 c

ap
_u

ni
f .

/ c
ap

_f
ul

l)

Mean Cap Improv’t Ratio − MUSIC Feedback − Nsymbols = 20

3 Rays MUSIC
6 Rays MUSIC
9 Rays MUSIC
11 Rays MUSIC
15 Rays MUSIC

Figure 5.7: Mean capacity achieved ratio (left) and mean capacity improved ratio
(right) - training MUSIC feedback (100 trials, Nsymbols = {10, 15, 20})
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Figure 5.8: Mean capacity achieved ratio (left) and mean capacity improved ratio (right)
- training 1-D ESPRIT feedback (100 trials, Nsymbols = {10, 15, 20}, ∆ = λ/4)
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Figure 5.9: Mean capacity achieved ratio (left) and mean capacity improved ratio (right)
- training 2-D ESPRIT feedback (500 trials, Nsymbols = {10, 15, 20}, ∆ = λ/2)
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Figure 5.10: Mean capacity achieved ratio - all feedback algorithms - (Nsymbols = 20,
Nrays = {3, 9, 15})
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Figure 5.11: Mean capacity achieved ratio - 1-D ESPRIT - SVA and IID channels V.
ray synthesis channels - (Nsymbols = 20 )
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Figure 5.12: CCDF capacity achieved ratio - SVA and IID channels V. ray synthesis
channels - (Nsymbols = 20, dB = {0, 6, 15})
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5.5 2.45 GHz MIMO Channel Sounding Results

Using the MIMO Narrowband Channel Measurement platform described in

[42], we replicated several of the transmit/receive locations simulated with the WiSE

ray tracing package to compare performance of the ray model feedback algorithm

on measured data. The system operated at a center frequency of 2.45 GHz using

symmetric 10× 10 linear arrays of dipole elements with λ/4 spacing. In choosing the

locations for measurements, we focused on locations where there was at least one wall

(and preferably several) between transmitter and receiver to encourage rich scattering

and less dominance of the Line of Sight path. The 7 endpoint locations are shown in

Figure 5.13. At each location, measurements were taken in two combinations with the

array broadside pointing north, south, east or west: the first pair being approximately

broadside to each other and the second pair with one array oriented approximately

endfire to the broadside of the other. For additional information, see [42] and [74].

For each of 26 measurement locations, there were between 3800 - 6200 in-

stances of the channel measured 80 ms apart. For each measured H , the channel was

normalized to average unit modulus using Equation 5.87, the feedback parameters

were estimated, and the capacities were calculated for several values of SNR. The

SNR variable only affected the value of PT used in the waterfilling equations; neither

H or the model feedback parameters varied with SNR. The measured H was used as

if it were the ”true” channel. No channel estimation was applied. The 1-D ESPRIT

algorithm was selected for analysis with the measured data because of it seemed to

be the most robust in the simulation results. The feedback capacity improvement

was typically best at the lowest SNR values. Figure 5.14 shows the histograms of the

capacity achieved ratio and capacity improved ratio over all measurement locations

at SNR = 0 dB. A typical example showing the time-variability of capacity and its

variability from location to location is shown in Figure 5.15 with each color swatch

representing measurements at a fixed location with time. As an alternative visualiza-
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N

Figure 5.13: Measurement locations in northeast section of Clyde Bldg. 4th floor.

tion of the performance, the mean of these ratios over individual measurement sets

is displayed as a function of SNR in Figure 5.16.
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Figure 5.14: Typical histograms of capacity achieved ratio (left) and capacity im-
proved ratio (right) - 1-D ESPRIT feedback over all H measurements - SNR = 0 dB
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(right) - 1-D ESPRIT feedback
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Figure 5.17 shows complementary CDF representations of the capacity perfor-

mance ratios for 1-D ESPRIT over the range of SNR values. These plots are useful to

determine the percentage of measured channel realizations had capacity performance

ratios equal to or greater than a particular value. Over the set of all measurements,

the 1-D ESPRIT feedback algorithm gave the best capacity performance, similar to

the results observed in the simulation data. Figure 5.18 shows a histogram of the

selected value of Nrays aggregated over all 26 measurement locations. It is interest-

ing to note that channels with order less than 5 occurred much less frequently. In

viewing the raw data, these low order channels occurred in tight bunches dispersed

among higher order measurements, rather than being evenly distributed through the

data. Once the channel order was detected at 5 or above, the distribution was fairly

uniform over the values from 5 to 9. Figure 5.19 shows a comparison of the number

of eigenchannels with allocated energy in the waterfilling solution compared with the

number of eigenchannels used with the direction-based feedback. As expected, the

number of eigenchannels increases with SNR, but the direction feedback utilized fewer

eigenchannels and increases more slowly with SNR.
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Figure 5.17: CCDF’s of capacity achieved ratio (left) and capacity improved ratio
(right) - 1-D ESPRIT feedback over all H measurements
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Figure 5.19: Number of waterfilling eigenchannels (left) and number of eigenchannels
using 1-D ESPRIT feedback (right) - SNR ∈ { 0, 6, 12 dB}
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5.6 Conclusions

From these results, we conclude that using ray model based feedback can

significantly improve upon the Fully Blind Transmitter channel capacity. However,

there are clear cases where the additional work involved yields only marginal benefits

– and in extreme cases even detrimental results. The estimation algorithm that

exhibited the best consistent performance was 1-D ESPRIT with iterative ad hoc

ray angle pairing. The algorithms investigated here are most relevant at low SNR

values when the number of active eigenchannels is low enough to leave significant

room for improvement between the Fully Blind Transmitter capacity and the Full

CSI Transmitter capacity.
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Chapter 6

Covariance Feedback for Improved Capacity

As an alternative to the ray-synthesis feedback for the channel matrix, H , we

investigated the use of similar reduced parameter methods for representing the trans-

mitted symbol covariance, Q, as a means of communicating channel state information

(CSI). The structure of a covariance matrix provides for some advantages because

• Q is Hermitian symmetric (Q = QH) (This dictates that the diagonal entries of

Q are purely real.) and

•• Q is Positive Semi-Definite. (This requires that the eigenvalues of Q are non-

negative.)

Q has no physical structure to exploit in ways similar to the discrete ray model.

There may be more specific formulations which use ray based parameters to represent

Q, but we did not investigate any of these options. A significant advantage of the

covariance feedback approach is a reduction in the dimensionality of the feedback

space. Where H is a complex matrix of dimension R × T , it has an equivalent real-

valued vector space representation of dimension 2RT . The equivalent real-valued

vector space represented by Q ∈ �T×T is only T 2 as seen by the sum of T real entries

on diagonal and T (T − 1)/2 unique complex entries on off diagonals which equals

T + 2T (T − 1)/2 = T 2 equivalent real entries. If R = T , this allows Q to be fully

represented with half as many real parameters as H (T 2 rather than 2RT ).

Our feedback approach represents an approximate Q as a linear combination

of Hermitian symmetric matrices where i takes values from a feedback set, i ∈ Sf ⊆
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{1, . . . , T 2}, as in

Qf = Qfeedback =
∑
i∈Sf

xiQi , (6.1)

where Qi = QH
i and xi ∈ � for all values of i. The cardinality of the set Sf is NQi.

The Qi’s are assumed to be pre-arranged so that they do not need to be transmitted

in order to form Qf . If NQi is relative small, the values of i may also be transmitted

to identify the set Sf . But, as NQi takes larger values, it may be more efficient to

assume that Sf = {1, . . . , T 2} and transmit xi = 0 for unused i values. The values for

NQi and xi are selected using some optimality criteria. The two criteria investigated

in this work are:

• LS - minimization of the squared error between Qwaterfilling and Qf .

•• MAXDET - maximization of the determinant det(I +H QfH
H).

In both cases, the optimization is carried out subject to the following constraints:

tr(Qf ) ≤ P (Maximum Power Constraint),

xHQf x ≥ 0 ∀ x ∈ �T (Positive Semi-Definite Constraint).

Using the feedback information in the xi’s, the transmitter can reconstruct Qf using

Equation 6.1 and shape the covariance of the transmitted symbols by applying

xf = Q
1/2
f xw , (6.2)

where xw are the white symbols, i.e. E{ xw x
H
w } = IT×T , and Q

1/2
f is calculated

from the eigendecomposition of Qf = SΛSH as Q
1/2
f = SΛ1/2. This gives a transmit

symbol covariance of

R = E{ xf x
H
f } = E{Q1/2

f xw x
H
w Q

1/2 H
f }

= Q
1/2
f E{ xw x

H
w }︸ ︷︷ ︸

I

Q
1/2 H
f = Q

1/2
f Q

1/2 H
f = Qf . (6.3)

For well-selected xi’s, the feedback capacity given by

Cf = log det (I +H QfH
H) (6.4)
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should approach the maximum value given by the waterfilling solution. Ideally, the

feedback set, Sf , should be chosen so that Cf approaches the waterfilling capacity

using a minimum of feedback information (i.e. as few xi’s as possible).

6.1 Selection of Qi matrices

In our investigation, we desired Qi matrices that would meet the Hermitian

symmetry requirement and effectively span the space in which Q resides. In situations

where a vector representation of Q or Qi is needed, we make use of the following

procedure for converting between complex, Hermitian matrices and purely real vectors

which defines the operators vec*(·) and mat*(·). Given Q = QH , vec*(Q) stacks

vertically (1) the diagonal entries of Q, (2) the real parts of the upper diagonal

entries taken diagonal-wise, and (3) the imaginary parts of the upper diagonal entries

taken diagonal-wise. For example,

LetA =

⎡
⎢⎢⎢⎣

1 4 + 7i 6 + 9i

4− 7i 2 5 + 8i

6− 9i 5− 8i 3

⎤
⎥⎥⎥⎦ , vec*(A) = [ 1 2 . . . 8 9 ]T . (6.5)

The operator mat*(·) is the inverse of vec*(·) such that mat*( [ 1 2 . . . 8 9 ]T ) produces

A from our example. Any similar procedure may be substituted, so long as it is applied

consistently.

We selected T 2 vectors qi ∈ �T 2
to form our set ofQi’s, desiring that the qi’s be

orthonormal and form Qi’s which are Hermitian symmetric (satisfied by the nature of

the mat*(·) operator) and positive semi-definite. In practice, however, we found that

the orthonormality of the qi’s was mutually exclusive to the PSD requirement of the

Qi’s. The following procedure proved sufficient and prevented undesirable behavior

in the MAXDET solution by ensuring that the Qi’s are positive semi-definite.
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1. USV H = svd( rand(T 2, T 2 ) ); U = [ u1 u2 . . . uT 2 ]

2. Qi = mat*(ui)

3. Enforce PSD:

(a) eigendecomposition of Qi = SΛSH

(b) Λj, j = min( 0 ,Λj, j )

(c) Qi = SΛSH

4. Qi = Qi/tr(Qi)

5. qi = vec*(Qi)

6.2 Construction of the Feedback Set

We used an ad hoc construction process to determine the members of the

feedback set, Sf . Initializing with the empty set, Sf = ∅, all the members of the set

Sunused = {1, . . . , T 2} are considered one at a time. For each j ∈ Sunused the optimum

value for the xi’s is calculated using i ∈ Stest = Sf∪{j}, and the feedback capacity, Cfj

is calculated using Equation 6.4. The element of Sunused which produces the maximum

value for Cfj is identified as jmax and selected for inclusion into Sf = Sf ∪ {jmax}.
The element jmax is removed from Sunused. This process may be repeated, adding one

member to Sf from each iteration, until all members of Sunused are removed, the size

of Sf exceeds some allowed threshold, or the marginal gains in Cf are not sufficient

to justify increasing the amount of feedback information to be transmitted.

6.3 LS Feedback Determination

Given a set of i values, such as the set Stest described in the previous section,

we wish to find the values of the xi’s which minimize the squared error between Qf

and Qwf (from the waterfilling solution) using i ∈ Stest subject to the constraints

that tr(Qf ) ≤ P and that Qf be positive semi-definite. We start with a conventional
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least squares solution as follows:

q∗wf = vec*(Qwf)

V =
[
vec*(Q

(1)
i ) · · · vec*

(
Q

(NQi)
i

) ]
xLS = V † q∗wf . (6.6)

The feedback covariance is then formed using

QLS =
∑

i∈Stest

xiQi = mat
( [

vec(Qi) · · · vec(QNQi
)
]
xLS

)
, (6.7)

where the vector xLS is defined as [ x1 · · · xNQi
]T . This formulation allows the

pseudoinverse, V †, to be calculated using purely real computations because V and

Q∗
wf are real valued.

To ensure that QLS is positive semi-definite, we decompose it into its eigen-

structure and recombine it setting negative eigenvalues to zero if necessary. This

process is described step-wise as:

1. QLS = S ΛSH.

2. λ = diag(Λ).

3. If no elements of λ are negative, then quit.

4. Λ = diag( min(0 , λ) ).

5. QLS = S ΛSH.

Finally, the power constraint is enforced by scaling QLS as in

QLS =
P

tr(QLS)
QLS . (6.8)

The feedback capacity, Cf , can now be calculated using Equation 6.4 with QLS sub-

stituted for Qf :

Cf, LS = log det (I +H QLSH
H) . (6.9)
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6.4 MAXDET Feedback Determination

In the process of simulating the LS covariance feedback algorithm, we observed

frequent cases where perturbations in the feedback coefficients, xi, would produce

increases in the feedback capacity at the expense of larger squared error. This suggests

that while LS feedback determination is tractable with traditional methods, it does

not necessarily produce feedback information for maximum capacity. Vandenberghe

et. al. have presented a generalized framework for solving determinant maximization

problems over a useful class of matrices which include our covariance determination

problem [75]. Their determinant maximization problem is formulated using linear

matrix inequality (LMI) constraints, which have been demonstrated to generalize

many common constraints, including those of interest in our problem. In addition,

they present a useful interior-point method for solving convex optimization problems

where more specialized (and perhaps faster) algorithms may not be applied, and they

have made available some extremely useful software, entitled “MAXDET”, for either

C-code or Matlab environments [76]. This presentation of the MAXDET problem

and its application to covariance feedback draws heavily from both of these references.

6.4.1 General MAXDET Problem

The general framework for MAXDET problems presented in [75] and [76] is

minimize cTx+ log detG(x)−1

subject to G(x) � 0 (6.10)

F (x) � 0 ,

where the vector x ∈ �m is the optimization variable. The inequality signs in 6.10

indicate that G(x) is positive definite and that F (x) is positive semi-definite. The

matrix functions G : �m → �
l×l and F : �m → �

n×n are affine:

G(x) = G0 + x1G1 + · · ·+ xmGm

F (x) = F0 + x1F1 + · · ·+ xmFm ,
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where Gi = GT
i and Fi = F T

i . The use of LMI constraints allows multiple constraints

of varied types to be applied simultaneously. Many examples of the variety of con-

straints that can be expressed as LMIs can be found in [77] and [78]. One important

feature of LMIs is the ability to enforce multiple LMI constraints simultaneously by

stacking block diagonally. For example, the following formulations are equivalent:

A(x) � 0

B(x) � 0
⇐⇒

⎡
⎣ A(x) 0

0 B(x)

⎤
⎦ � 0 . (6.11)

Another useful property of LMIs which is found in [79] on page 202 is the means to

express a complex LMI of the form

F0 + x1F1 + · · ·+ xmFm � 0 , (6.12)

where F0, . . . , Fm are complex with Fi = FH
i and x ∈ �m is a real variable, as a

real-valued LMI. This transformation makes use of the fact that

X � 0 ⇐⇒
⎡
⎣ RX −IX

IX RX

⎤
⎦ � 0 , (6.13)

where RX and IX are, respectively, the real and imaginary parts of some com-

plex matrix, X. The “MAXDET” software only accepts real-valued arguments, so

this equivalency allows conversion of complex-valued MAXDET problems to a corre-

sponding split real and imaginary component format.

6.4.2 Formulation of Feedback Determination as MAXDET problem

We develop the MAXDET formulation for the Feedback Determination prob-

lem by first composing it as a complex-valued MAXDET problem and then using the

transformation in 6.13 to express it as an equivalent real-valued problem suitable for

the “MAXDET” software. The objective is to identify the feedback information that

maximizes the ergodic capacity determinant where the transmit symbol covariance

equals Qf . Using the substitution Qf =
∑

i∈Sf
xiQi from Equation 6.1, this can be
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expressed as

maximize log det(I +H QfH
H) = log det

(
I +
∑
i∈Sf

xiH QiH
H
)
. (6.14)

To convert this into the minimization operation used by MAXDET, we multiply the

objective by −1 and apply the properties of the log and det operators to obtain

minimize − log det
(
I+
∑
i∈Sf

xi H QiH
H
)

= log det
(
I+
∑
i∈Sf

xiH QiH
H
)−1

, (6.15)

which fits the general MAXDET objective function with the linear component set to

zero, c = 0. The argument of the determinant can be written as an affine function,

G(x), using G0 = I and Gi = H QiH
H.

The maximum power constraint can be adapted to the LMI format as a scalar

quantity by algebraic manipulation:

tr (Qf ) ≤ P

tr
(∑

i∈Sf

xiQi

)
≤ P

∑
i∈Sf

xi tr (Qi ) ≤ P

P −
∑
i∈Sf

xi tr (Qi ) ≥ 0 . (6.16)

This constraint results in a scalar affine function, F (1)(x), by assigning F
(1)
0 = P and

F
(1)
i = −tr (Qi ).

The positive semi-definite constraint for Qf is immediately recognizable as an

LMI

Qf =
∑
i∈Sf

xiQi � 0 , (6.17)

which can be written as F (2)(x) using F
(2)
0 = 0 and F

(2)
i = Qi. Putting the objective

and constraint functions together (using the block diagonal structure in Equation 6.11
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to combine F (1)(x) and F (2)(x) into a single function, F (x)) results in the complex-

valued MAXDET problem given by

minimize log det
( G(x)︷ ︸︸ ︷
I +
∑

i

xiH QiH
H
)−1

subject to G(x) � 0 (6.18)⎡
⎢⎢⎣
P −

∑
i

xi tr (Qi) 0 1×T

0T×1

∑
i

xiQi

⎤
⎥⎥⎦ � 0 ,

where i is taken as i ∈ Sf and both Gi = GH
i and Fi = FH

i have complex entries.

In order to translate this complex-valued problem into a real-valued version

suitable for the “MAXDET” software, we must make one additional observation.

While the constraint LMI involving F (x) may be split directly using Equation 6.13,

the determinant operator applied to G(x) is non-linear and prevents a direct trans-

formation of the objective function. However, by taking advantage of the fact that

det(G(x)) is non-negative, we can use the observation that for any complex Hermitian

matrix, X = XH ,

det

⎡
⎣ RX −IX

IX RX

⎤
⎦ = det(X)2 , (6.19)

where RX and IX are the real and imaginary parts of X, respectively. Since G(x) is

Hermitian symmetric for all x, the optimization of detG(x) is equivalent to optimizing

max. det

⎡
⎣ RG(x) −IG(x)

IG(x) RG(x)

⎤
⎦ = det

(
G(x)

)2

⇐⇒ max. detG(x) , (6.20)

where G(x) = RG(x) + j IG(x) represents the decomposition of G(x) into its real

and imaginary components.
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Bringing all of the pieces together, we can write the Feedback Determination

problem in MAXDET form with all real-valued quantities:

minimize log detG∗(x)−1 = − log det

⎡
⎢⎣ RG(x) −IG(x)

IG(x) RG(x)

⎤
⎥⎦

subject to G∗(x) � 0 (6.21)

F ∗(x) =

⎡
⎢⎢⎢⎢⎣
P −

∑
i

xi tr (Qi) 0 1×T 0 1×T

0T×1 xiRQi −xiIQi

0T×1 xiIQi xiRQi

⎤
⎥⎥⎥⎥⎦ � 0 .

All instances of i are taken as i ∈ Sf , and the function G(x) is used here as defined in

Equation 6.18, G(x) = I +
∑

i xiH QiH
H. Explicitly, the functions G∗(x) and F ∗(x)

are formed from:

G∗
0 =

⎡
⎣ IR×R 0R×R

0R×R IR×R

⎤
⎦ = I2R×2R

G∗
i =

⎡
⎣ Re

{
H QiH

H
} −Im

{
H QiH

H
}

Im
{
H QiH

H
}

Re
{
H QiH

H
}
⎤
⎦

F ∗
0 =

⎡
⎣ P 01×2T

02T×1 02T×2T

⎤
⎦ = diag ( [P 01×2T ] )

F ∗
i =

⎡
⎢⎢⎢⎣
−tr (Qi) 01×T 01×T

0T×1 RQi −IQi

0T×1 IQi RQi

⎤
⎥⎥⎥⎦ . (6.22)

The solution to this problem produces xi values which can be used to synthesize

QMAXDET using

QMAXDET =
∑

i∈Stest

xiQi =
[
vec(Qi) · · · vec(QNQi

)
]
xMAXDET , (6.23)

where the vector xMAXDET is defined as [ x1 · · · xNQi
]T . In contrast to the LS

solution, QMAXDET already meets the PSD and power constraints, so they are not
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enforced separately. Once QMAXDET is known, the feedback capacity can be calcu-

lated using Equation 6.4 with QMAXDET substituted for Qf :

Cf, MAXDET = log det (I +H QMAXDETH
H) . (6.24)

6.5 Simulation Results

The Covariance Feedback algorithms described in this section were tested with

Monte Carlo simulations to compare their performance. The channel matrices were

formed with i.i.d. elements with a Circular Complex Gaussian distribution of zero

mean and unit variance in both the real and imaginary components. Each random

channel matrix was scaled to have an average unit modulus for its entries using

Equation 5.87 as indicated below:

H = H

√
M N∑M

i=1

∑N
j=1 |Hi,j|2

= H

√
M N

‖H ‖2F
= H

√
M N

‖H ‖F . (6.25)

The set of Qi matrices used to represent the feedback covariance was randomly se-

lected at the beginning of the experiment as described on page 108 and used without

alteration for all Monte Carlo trials.

In all simulations, the transmit and receive arrays are Uniform Linear Arrays

with equal numbers of elements, and the quantity Nant is used to represent the

number of antennas in these arrays: Nant = T = R. Each simulation was run with

500 trials as the array sizes and Signal-to-Noise ratio (SNR) are varied.

6.5.1 LS Covariance Feedback

Figure 6.1 shows typical results from the LS covariance feedback Monte Carlo

trials displayed as a CCDF of Capacity Ratio as the number of feedback terms, NQi,

is varied. To simplify the legend, we took advantage of the fact that the capacity

ratio generally increases monotonically with NQi. In this example plot, the value of

NQi has been explicitly labeled for several traces to illustrate this point. The leftmost

trace shows the capacity ratio when no feedback is used, and uniform eigenvalues are
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Figure 6.1: CCDF of LS capacity ratio Nant = 3 SNR = 3 dB 500 trials

used for the transmitted signal covariance. As we move to the traces to the right, NQi

increases. The highlighted CCDF point illustrates that for NQi = 4, the probability

that the capacity ratio is greater than or equal to 0.9 is approximately 90%. This

point was used with varying values of SNR and number of antenna elements (Nant)

to determine the minimum number of feedback terms needed to ensure that the

capacity ratio was at least 0.9 with a probability of 90% or greater. These minimum

values for NQi are shown in Table 6.1 for both LS and (MAXDET) methods. In

some cases, there may be significant cushion present between the CCDF and the (0.9,

90%) point. The plots in Figure 6.2 show CCDF’s for Nant = 3 as the SNR is

varied over the set { 0, 3, 6, 10 dB}. As expected, the marginal capacity benefit of

adding another feedback element is the greatest for the first few terms and decreases

as more feedback is used. Also, as the SNR increases, the performance of uniform

eigenvalues (no feedback case) improves to the point that it may outperform cases

with small values of NQi some fraction of the time. (Note that the abscissa axis

limits are shifted for the two highest SNR values.) These behaviors are consistently

observed for larger array sizes.
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Table 6.1: Minimum number of feedback values, NQi, using LS (MAXDET) to ensure
P (Capacity Ratio ≥ 0.9) ≥ 90%.

Nant

∖
SNR 0 dB 3 dB 6 dB 10 dB

3 5 (5) 4 (3) 2 (2) 1 (1)

4 6 (5) 4 (3) 2 (2) 0 (0)

5 8 (6) 5 (4) 2 (1) 0 (0)

Another means of analyzing these results is to look at the statistics of the quan-

tity ∆Capacity = Capacity(NQi + 1) − Capacity(NQi), which indicates the marginal

change in capacity resulting when one additional feedback term is used. The traces in

Figure 6.3 show the behavior of ∆Capacity using Complementary CDF curves as NQi

is varied. The indicated point illustrates the probability that increasing NQi from 0

to 1 will result in a capacity increase of at least 0.25 bits/sec/Hz is 40%. This type

of graph clearly shows the decreasing marginal returns in capacity as additional feed-

back terms are used. These statistics could be used to evaluate the merit of increasing

the amount of feedback information against the cost of feedback transmission. Figure

6.4 shows the same type of CCDF curves for Nant=3 as the SNR is varied over the

set { 0, 3, 6, 10 dB}. Note that for higher SNR cases, the first feedback value is

likely to result in a loss of capacity which can be recovered with a higher value of

NQi. Additional figures showing Covariance Feedback performance, including results

for larger array sizes. are included in Appendix A.
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Figure 6.2: CCDF of LS capacity ratio Nant = 3 SNR ∈ { 0, 3, 6, 10 dB} 500 trials

6.5.2 MAXDET Covariance Feedback

Figure 6.5 shows the results from MAXDET covariance feedback Monte Carlo

simulations using the same CCDF of the Capacity Ratio used in the LS results dis-

played in Figure 6.2. For further specifics regarding the organization of the plot, refer

to Figure 6.1. Some perception of the improved performance of MAXDET feedback

over the LS method can be gained from Table 6.1 on page 118, which shows that

MAXDET meets the P (Capacity Ratio ≥ 0.9) ≥ 90% performance criterion with an

equal, and frequently fewer, number of feedback terms.
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Figure 6.3: CCDF of LS ∆Capacity Nant = 3 SNR = 3 dB 500 trials

The MAXDET performance advantage can be more specifically observed using

the statistics of the difference between the MAXDET Capacity Ratio and the LS

Capacity Ratio. This CCDF of this quantity, defined as

δCR = MAXDET Capacity Ratio− LS Capacity Ratio , (6.26)

is plotted in Figure 6.6 for 3-element arrays over the set of SNR values. It is interesting

to note that for NQi = 1, there is no difference between the feedback coefficient calcu-

lated by the LS and MAXDET methods, for all observed array sizes and SNR values.

Hence, the first trace never deviates from δCR = 0. It is clear from these figures, that

as the SNR increases, the performance gap between the MAXDET method and the

LS method decreases, and eventually both methods produce equivalent results. The

performance gains for MAXDET are greatest at the lowest value of SNR. Figure 6.7

shows an exploded portion of the δCR graph for SNR = 0. This data indicates that

greatest difference between MAXDET and LS performance occurs for NQi = 3 and 4,

and it diminishes gradually as NQi is increased beyond that point. This characteristic

holds true for higher SNR values, except that the progression of δCR increasing to its
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Figure 6.4: CCDF of LS ∆Capacity Nant = 3 SNR ∈ { 0, 3, 6, 10 dB} 500 trials

maximum value and then declining towards 0 takes place over a much wider range of

NQi. In fact, for 4 element arrays, MAXDET’s increased performance at the lowest

SNR value is remarkably sustained, and it does not totally converge to the LS capac-

ity performance even for higher SNR. This can be seen in Figure 6.8 which illustrates

δCR for the 4 antenna case with SNR taking its range of values. Some values of NQi

have been omitted to reduce the number of traces in the plots. The same behaviors

are even more pronounced in the δCR plots using 5 elements as displayed in Figure

6.9. Additional plots for the Nant = 4 and 5 simulations can be found in Appendix

A.
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Figure 6.6: CCDF of δCR Nant = 3 SNR ∈ { 0, 3, 6, 10 dB} 500 trials
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Figure 6.8: CCDF of δCR Nant = 4 SNR ∈ { 0, 3, 6, 10 dB} 500 trials
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Figure 6.9: CCDF of δCR Nant = 5 SNR ∈ { 0, 3, 6, 10 dB} 500 trials
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6.6 2.45 GHz MIMO Channel Sounding Results

The most significant challenge in applying the Covariance Feedback methods

described in this chapter to the 2.45 GHz measured channels is dealing with the

10 × 10 dimension of H where the progressive construction of the feedback set de-

scribed in Section 6.2 requires exponentially increasing repetitions of the feedback

calculations. To be specific, if the maximum number of feedback terms, NQi = N2,

are required for a square channel matrix of dimension N ×N , the feedback coefficient

solution will need to be repeated N2 + (N2 − 1) + . . . + 1 = N2(N2 + 1)/2 times.

Restricting the feedback set to fewer terms produces some benefits, but the first few

terms are the most expensive because the search set begins with its maximum car-

dinality. However, in order to produce meaniful comparisons with the Ray Model

Feedback methods of Chapter 5, the full 10× 10 measurements were analyzed using

Covariance Feedback. The MAXDET mathod’s complexity made it intractable for

calculating the covariance feedback solution for each measurement. As an alternative,

all available channel measurements were processed with LS Covariance Feedback. For

each of the 26 measurement locations, three channel realizations were identified for

MAXDET processing by selecting the channels with minimum deviation from the

maximum, minimum, and mean Capacity Ratio performance under LS covariance

feedback over all values of NQi. All calculations were performed using 0 dB SNR to

parallel the improved performance of the Ray Model feedback methods at this power

level.

As a first indication of the covariance feedback results, Figure 6.10 shows the

mean value of the Capacity Ratio = Cfeedback/Cwaterfilling over all of the measurements

at all locations for NQi = 0 (no feedback case) up to a maximum value of N2 = 100.

The right plot shows a zoomed portion of the same data. Notice that the slope of

the Capacity Ratio versus NQi begins large and decreases as more feedback terms are

added. The maximum and minimum values of the Capacity Ratio are also plotted

for each NQi to show the bounds of the distribution. Figure 6.11 shows the CCDF
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Figure 6.10: Capacity ratio - all locations - LS feedback - SNR 0dB

of capacity ratio over all measurements for two sets of NQi values. The NQi = 0

curves indicates the ”no feedback” case. The region where covariance feedback shows

its advantage is in the smaller values of NQi where the gains per additional term are

steepest. For low SNR channels where the number of active eigenchannels is low, co-

variance feedback makes significant improvements over the no feedback case. Figures

6.10 and 6.11 include plots for small values of NQi to compare against the no feedback
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Figure 6.11: CCDF of capacity ratio all locations - LS feedback - SNR 0dB
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scenario. Unfortunately, the slope of the curve falls off too quickly, and many feed-

back terms are required to push the capacity ratio towards its upper limits. For larger

NQi values, the quantity of covariance feedback exceeds the amount of information

necessary to feedback the unique entries of Q, and the rising computational burden

makes covariance feedback even more disadvantageous.
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Figure 6.12: Capacity ratio - all locations - LS feedback - SNR 0dB

To further compare the two feedback methods, the capacity ratios can be

related using an equivalent amount of feedback information. Because each Qi con-

tributes only two real-valued feedback parameters (xi and i) and each ray model

feedback value requires four-real valued parameters (φi, θi, and complex βi), we con-

sider that each ray feedback term represents the equivalent transmission load of two

covariance feedback terms. The value of NQi in this case is selected to equal 2Nrays.

Figure 6.12 shows results in terms of the quantity ∆Capacity Ratio = Capacity Ra-

tio using LS Covariance Feedback - Capacity Ratio using Ray Model 1-D ESPRIT

Feedback. LS Covariance Feedback gives some relative increases in performace, but

it requires too much feedback information in order to yield higher values of Capacity

Ratio. Overall, its performance is slightly worse than the Ray Model Feedback using

1-D ESPRIT.
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Figure 6.13: Histograms of NQi and ∆Feedback for equivalent performance

An alternative method is to determine the number of feedback terms required

so that the performance using LS Covariance Feedback is equivalent to the 1-D ES-

PRIT Ray Model Feedback. This data is shown in Figure 6.13. The left histogram

shows NQi for equivalent performance, and the right histogram is of the quantity

∆Feedback = NQi (equivalent performance) - 2Nrays. When ∆Feedback is negative,

the covariance feedback method is able to produce equivalent performance with a

reduced quantity of feedback. This only occurs in 23.8% of the measured channels.

Again, this indicates that the performance of LS Covariance Feedback is inferior to

that of Ray Model 1-D ESPRIT Feedback.

The results of MAXDET feedback applied to a subset of the measured channels

are shown in Figure 6.14. It is interesting to note that the two covariance feedback

methods produce equivalent mean performance until NQi = 12 and then the LS

performance begins to climb more slowly than that of MAXDET. Additional details

of this comparison can be seen in the CCDF of Capacity Ratio curves in Figure 6.15

where three values of NQi are displayed: 20,30,40. Table 6.2 shows the Capacity Ratio

values which yield 10% Outage Probability. The difference between MAXDET and LS

performance increases with larger values of NQi. Unfortunately, the computational
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Table 6.2: Capacity ratio value for 10% outage probability using LS and MAXDET
covariance feedback.

Feedback

∖
NQi 20 30 40

LS 0.817 0.838 0.851

MAXDET 0.823 0.862 0.895

∆ 0.006 0.024 0.044

load of MAXDET feedback determination is too prohibitive to offset the marginal

improvements it produces even for larger NQi.

6.7 Conclusions

The best capacity performance using covariance feedback methods occurs at

low values of SNR where the number of active eigenchannels is small. In these scenar-

ios, feedback information identifies the eigenchannels where power should be allocated

and results in significant gains over the uniform power allocation strategy. As the

SNR increases, a few covariance feedback terms still produce capacity gains, but the

marginal benefit of additional feedback terms is noticeably less.

MAXDET feedback determination method produces slight gains over the LS

algorithm, particularly when the SNR is low. MAXDET’s range of enhanced per-

formance is more sustained with larger array sizes, but these gains are offset by

MAXDET’s increased computational load to the point that the LS algorithm is a

better choice overall.

In comparison between LS Covariance Feedback and 1-D ESPRIT Ray Model

Feedback used with measured 10× 10 channels, Ray Model Feedback gives superior

capacity performance. This can be observed both in terms of the typical amount of

feedback required for equivalent performance as well as the capacity ratio obtained

when using an equivalent quantity of feedback.
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Chapter 7

Conclusions

7.1 Conclusions

The ray tracing simulations presented in this research confirm the time and

angle clustering of ray arrivals in indoor channels observed by [6] and [7] and cap-

tured in the SVA model. Although the agreement between their measurements and

deterministic simulation does not produce a ray for ray correspondence, the statisti-

cal distributions agree and produce model parameter estimates which are consistent.

The ray tracing results indicate that the simulation’s ability to predict time and angle

related parameters is more robust than its predictions of power profiles. Our work

also indicates that when modeling the indoor wireless transmission environment, the

description of reflective scatters (such as door and window frames, rebar, and other

metallic features) is more important than detailed information about the bulk materi-

als (such as wall structure). While ray tracing offers a low cost alternative to channel

sounding measurements, a reasonably high degree of detail is necessary to capture

the important characteristics of the building within the geometry model.

Building on the discrete ray model of the MIMO communication channel, we

presented several means to identify ray model parameters which can efficiently rep-

resent the channel state information for use in shaping the covariance of transmitted

symbols for more optimum information capacity. Several feedback determination

algorithms are investigated, including a 2-D Unitary Esprit method which solves di-

rectly for ray departure and arrival angles together with their pairing relationships.
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Although most of the algorithms gave nearly optimal results when perfect knowl-

edge of the channel transfer matrix was available, the results degraded when using

training-based estimation of the channel. In this more realistic case, the 1-D ESPRIT

algorithm performed the best, yielding better than 90% of the ideal waterfilling ca-

pacity when adequate training is provided. It was observed that the performance

gains from ray model feedback were most significant when the SNR was low. This

scenario is ideal for feedback information because there are fewer eigenchannels in

the waterfilling solution with non-zero power allocation, and the opportunity for im-

provement over uniform power allocation is much greater. As the SNR increases,

the capacity gain from feedback is still significant, but as the performance of uniform

power allocation increase, there is less room for improvement using feedback. We also

used the 1-D ESPRIT ray model feedback algorithm to show the effects of typical

assumptions about the random nature of the MIMO channel, and we observed that

the SVA model and ray synthesis channel model yield comparable and significant ca-

pacity gains using ray model feedback. When the long term behavior of the channel

matrix is averaged and assumed to be zero-mean and uncorrelated, the capacity gains

of ray model feedback gains drop sharply. The ray model feedback methods were also

applied to 10× 10 measured channels taken to replicate the conditions used for the

ray tracing simulations and earlier SISO measurements.

We also presented an alternative structure for feedback information using the

transmitted symbol covariance. It was hoped that the symmetric, positive semi-

definite structure of the covariance matrix would allow a reduction in the amount of

feedback information required to realize significant capacity improvements over the

uniform power allocation strategy. Having observed that minimizing the squared error

to fit to a covariance matrix did not result in maximum capacity, we presented results

for an alternative feedback determinant method, MAXDET, that directly maximized

the capacity determinant subject to imposed constraints. MAXDET does produce

some marginal capacity improvements over the traditional least squares method, but

these gains are outweighed by MAXDET’s increased computational burden which
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increase quickly with array size and number of feedback terms. Similar to the ray

model feedback results, covariance feedback shows its most promising results under

lower SNR conditions where there are fewer active eigenchannels. Significant im-

provements over the uniform allocation case can be achieved with a small number

of feedback terms. However, the marginal capacity benefit of additional feedback

decreases as more terms are added, and it is possible for the number of covariance

feedback terms to outweigh to information required to simply feed back the unique

entries of transmitted symbol covariance matrix. To assess the performance of co-

variance feedback relative to the ray model approach, we applied both methods to

the 10 x 10 measured channel data. In this comparison, the ray model feedback had

superior capacity performance - yielding increased capacity using equivalent amounts

of feedback and delivering comparable capacity results with less feedback informa-

tion. The covariance methods both required more computational effort than the 1-D

ESPRIT ray feedback approach.

7.2 Suggestions for Future Work

• Use the ray tracing simulation tools to replicate other channel sounding mea-

surements to investigate the validity of the current conclusions in varying chan-

nel environments.

•• Investigate means to improve the quality the prediction of power-related behav-

ior using the ray tracing software.

• Seek alternative feedback methods which use the additional information pro-

vided by the waterfilling solution about the number of eigenchannels with non-

zero power allocated to them.

• Investigate the use of alternative methods for maximizing the feedback capacity

with a minimum quantity of feedback information. Specifically, seek better ways
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of using the structure of the transmitted symbol covariance or the waterfilling

solution to increase the capacity of the channel versus uniform power allocation.

• Investigate the affects of array geometries other than uniform linear array on

the feedback determination algorithms and their performance.
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Appendix A

Covariance Feedback Simulation Figures
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This appendix includes additional figures displaying the results of the covari-

ance feedback simulations described in Chapter 6. For more information on the

contents and interpretation of these graphs, see Section 6.5.

4 Element Arrays (T = R = Nant = 4)
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Figure A.1: CCDF of LS capacity ratio Nant = 4 SNR ∈ { 0, 3, 6, 10 dB} 500 trials
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5 Element Arrays (T = R = Nant = 5)
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Figure A.4: CCDF of LS capacity ratio Nant = 5 SNR ∈ { 0, 3, 6, 10 dB} 500 trials
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Figure A.6: CCDF of δCR Nant = 5 SNR ∈ { 0, 3, 6, 10 dB} 500 trials
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